IAQ 2020: Indoor Environmental Quality Performance Approaches

Analysis of Zoned Residential Ventilation Controls

lain Walker, PhD
Lawrence Berkeley National Laboratory
iswalker@lbl.gov

Learning Objectives

- Knowledge of optimized residential ventilation system design for zoning
- Understanding of the impact of ventilation zoning on energy use
- Understanding of the impact of ventilation zoning on indoor air quality
- Understanding of the limitations of ventilation zoning

Acknowledgements

- Co-Authors: Brennan Less, David Lorenzetti and Mike Sohn LBNL
- Funding:
- US Department of Energy, Building Technologies Office
- California Energy Commission
- Aereco

Simulation Background

- New California code compliant homes:
 - single family with envelope leakage of 0.6,
 2 and 3 ACH50
 - Apartment, 3 ACH50
- Central forced air for non-zoned and distributed zonal heat pumps for zoned systems

Zone containment concentration, Zone infiltration flow rate

California Climate Zone	HDD	CDD
1	2400	5
3	1700	70
10	950	950
16	2800	250

Contaminant Emissions

From HENGH field study of 70 California homes

- Continuous emission:
 - "Generic" contaminant
 - Formaldehyde (depends on Temperature, Humidity and Ventilation Rate)
- Periodic Emission:
 - PM2.5 from cooking
 - CO₂ and H₂O from occupants
 - Occupant schedules
- Use reference exposure limits for chronic exposure:
 - Formaldehyde: OEHHA REL is 9 μg/m³ for 8-hour and chronic exposures
 - Particles (PM2.5): WHO Chronic level is 10 μg/m³
 - CO₂: 1100 ppm
 - Moisture: 60% RH

Smart Ventilation Strategies

- Track occupants (assumes we know occupancy)
- Combine with outdoor temperature (shift to milder conditions)
- Zonal Air flow options:
 - 1. Air flow
 - 1. Keep total air flow constant. Direct air to to zones that need venting.
 - 2. Reduce total air flow. Vent each zone that calls for venting at rate proportional to fraction of total floor area.
 - 2. Number of zones
 - 1. Four + zones: kitchen, bathrooms, bedrooms and "other" living spaces
 - 2. Two zones: 1. sleeping & 2. All other spaces

Exposure-based Controls

- Keep relative exposure below 1 when occupied, 5 when vacant
- Match relative exposure to continuously operating system
- Track occupant individual exposure
- Ventilate at low rate unoccupied, higher when occupied. No exposure calculations
- Contaminant-based:
 - Vent dwelling if any contaminant in any zone above threshold
 - Vent zone if that zone above threshold
 - Vent zone if occupied and above threshold
 - Control RH between 30% and 60%

Best performance was for exhaust systems

Zoning using occupancy controls looks OK

Exposures and Ventilation Rates – no contaminant controls

Zoning can:

increase exposure

- For particles
- For generic and formaldehyde exposure

decrease exposure

For most CO₂ cases

Dwelling Mean Infiltration Rate (hr⁻¹)

Zoning Exposure Results for VarQ controller (best energy performance) with contaminant controls

Zonal controls can either *increase* or *decrease* exposure:

Biggest *decrease*: consistently better for CO₂

because occupants are source

Biggest *increase*: consistently poor for PM_{2.5} supply & balanced systems

Exhaust more effective at concentrated contaminant removal

varQ Zonal vs. Non-Zonal Personal Exposures

Non-Zonal

Are more zones better for contaminants?

Controlling more zones is sometimes good, some times not for *CONTAMINANTS*

As occupants move from zone to zone they are exposed to higher contaminant levels upon entry to a zone that was previously under-ventilated.

2-Zones Controlled

Are more zones better for energy savings?

Sometimes good: SF homes

Sometimes not: apartment

Other observations

- Direct contaminant control
 - Can't vent enough to control formaldehyde even at double the ASHRAE 62.2 minimum required rate
 - Future work will need to allow for much higher formaldehyde is this OK?
- Exhaust systems:
 - Least zonal (but still good for bedroom CO₂ control)
 - Most consistent contaminant control
- Supply systems
 - More effective zoning lowest total ventilation
 - Higher power fans mean bigger energy use... but also bigger savings when controlled
 - Not so good for particles: more from outside + not as good at removing particles from cooking
- Balanced systems
 - Effective zoning highest total ventilation but also highest fan power. Had the biggest energy savings from smart controls

Conclusions

- Few control strategies saved energy without increasing exposure
- Hard for zonal ventilation to control all contaminants
- Exhaust systems most consistently saved energy
- Effective zoning limited by:
 - Open doors
 - Occupant movement (continually entering less ventilated space)
 - Zoning effect depends on contaminant
 - Particles increased, CO₂ decreased, HCHO/generic source up or down
- Direct contaminant controls were ineffective due to the inability to control formaldehyde below chronic levels
- Adding extra zones beyond sleeping/other ineffective

Bibliography

Walker, I.S., Less, B.D, Lorenzetti, D. and Sohn, M. 2022. Analysis of zoned ventilation systems. Presented at IAQ 2020. Athens, Greece. May 6th2022.

Additional details in:

Less, B., Walker, I., Lorenzetti, D., Mills, E., Rapp, V., Dutton, S., Sohn, M., Li, X., Clark, J. and Sherman, M. 2020. Smart Ventilation for Advanced California Homes. LBNL-2001342. https://doi.org/10.2172/1635274

Less, B., Walker, I., Lorenzetti, D., and Sohn, M. (2021), SVACH - Development of advanced smart ventilation controls for residential applications, Dryad, Dataset, https://doi.org/10.7941/D1WK8M

Questions?

lain Walker
iswalker@lbl.gov

Thank you!