

All-Electric Homes on a 100A Panel

Iain Walker & Brennan Less

February 2023

What's the issue?

Decarbonization Retrofits

- New homes almost always have enough panel capacity 200A typical
- Many existing homes have <200A
- Panel/wiring/service upgrades are costly (many thousands of dollars)
 - A big barrier to electrification/decarbonization
- How do we minimize the cost to electrify existing homes???
- Electrify for under 100A...and avoid that panel replacement

2

Electric Heating

Growth in Electric Heating

Distribution of Electric Heating

Primary Heating Fuel (Plurality)

Data from the American Community Survey (2016).

- 40% of homes have electric primary heating
- >25% of homes are already all-electric
- 75% of homes have central AC

https://www.eia.gov/todayinenergy/detail.php?id=39293

Current Electric Appliances in the US

Presence of equipment and use of electricity in U.S. homes (2015)

share of all primary residences

#RESNET2022

eia

What's Panels Are Actually Installed?

Our Goal

- Estimate panel amperage across the US housing stock using ResStock
- Build machine learning models to predict amperage based on
 - Vintage, floor area, presence of major electrical end-uses, solar, EV, etc.
- What information do we have?
 - Code requirements by year
 - Citizen science data collection
 - Other assembled data sets

What's Actually Installed: California Kitchens and 100A Panels

 Single Family Homes older than about 1968 in California were not required to have 20amp kitchen circuits, and are much more likely to not already have A/C (which ultimately required a 100-amp panel)

Homes built before 1968 are most likely to need a panel upgrade

Background: It is difficult to estimate the extent to which panel capacities are a barrier to electrification because there is no national data on panel capacities

Approach: We recruit occupants of single-family homes with a national survey tool (Amazon Mechanical Turk).

Each recruit:

- fills out a short survey of appliances in homes, age of house, size, location, fuels used for heating, etc.
- photographs their electrical panel
- gets paid \$2- \$5

Results:

- 190 homes (increasing 10 15/week @ \$5/home) histogram of panel capacities for homes by fuel, age, floor area, location
- available circuits for electrification

Approach to Acquiring Data on Panel and Home Characteristics

BUILDING TECHNOLOGY & URBAN SYSTEMS DIVISION Energy Technologies Area

Survey Questions (1)

The Worker sees this survey form

* 1. Please select the type of single family home you live in (if you do not live in a single family home, we kindly ask that you do not fill out this survey and stay tuned for another survey)

* 7. Please select all major electric appliances that you use in your home 🔍

Central air conditioner

Room air conditioner

Energy Technologies Area

BUILDING TECHNOLOGY & URBAN SYSTEMS DIVISION Energy Technologies Area

What's Actually installed? Other Data Sources

	Single-	Multi-		Panel Amperag	Panel Space	Panel Upgrade	Peak Demand	Upgrade Cost	
Source	family	family	Project Count	e Data	Available	Data	Data	Data	State
TECH Clean CA	x	x	9609	x		х		x	CA
BayRen	x		6461	х	Х				CA
NEEA RBSA	x	x	1279	x			~180 homes		OR, WA, ID, MT
Home Energy Analytics	x		497	x			x		CA
Eden Housing		x	80 MF Buildings (1000's of units)	x	Visual review?				СА
			>2.000	~	~				
EPRI Survey			>3,000	X	X				US
TOTAL			17,846						

What's Actually installed? Other Data Sources

Source		Single- family	Multi- family	Project Count	Panel Amperag e Data	Panel Space Available	Panel Upgrade Data	Peak Demand Data	Upgrade Cost Data	State
TECH Clean CA		X	X	9609	x		x		x	CA
BayRen		х		6461	х	Х				CA
NEEA RBSA Home Energy A	 Important Biases to Note: Most data sets represent homes engaging in EE programs (not random) Very strong bias to California housing stock Mostly single-family data Robust statistical models should allow us to over-come most of these 						idom) ese		OR, WA, ID, MT CA	
Eden Housing	IIMILa	limitations								CA
EPRI Survey	>3,000 x x							US		
TOTAL				17,846						

What's Actually installed? Other Data Sources

Main Panel Amperage

BUILDING TECHNOLOGY & URBAN SYSTEMS DIVISION Energy Technologies Area

Vintage	Mean	Median	Mode
<1940	175	125	200
1940s	172	125	200
1950s	156	125	200
1960s	147	125	100
1970s	141	125	100
1980s	143	125	100
1990s	160	200	200
2000s	204	200	200
2010s	202	200	200
2020s	227	200	200
Unknown	163	200	200

CoolingType	Mean	Median	Mode
Unknown	165	200	200
central_ac	163	175	200
evaporative_			
cooling	162	200	NA
heat_pump	179	200	200
no_cooling	157	125	100
room_ac	156	100	100

Has PV	Mean	Median	Mode
FALSE	163	125	200
TRUE	166	200	200

Why Not Just Upgrade to 200 Amps?

California Overview:

- 14 million homes in CA
- How many need panel upgrades? 6 million built before 1968 (when 100A became standard) 8 million based on gathered panel statistics
- What does it cost?
 - Household cost: \$3,000-\$25,000 to homeowner + similar amount 0 for utility
 - State-wide cost (very rough): \$25-\$40 billion 0
- Time delays
 - 3-6 months project delay each upgrade 0
 - >1-year lead time on transformers 0
- Upstream impacts
 - 0
 - Utility distribution system upgrades increase energy costs Increasing system peak demand and worsening duck curve and 0 carbon impácts
 - Utility might reject your interconnection 0

Objective 2. Understand the costs incurred by all parties when upgrading electrical service to residential sites

Activity 1: Identify typical costs and Activity 2: Identify/explain factors that impact these costs

Cost Description	Average cost	Transaction
Homeowner Equipment Service Upgrade Fee	\$1,300 - \$5,000	Homeowner \longrightarrow Contractor
Breaker Panel Upgrade	\$1,300 - \$5,000	Homeowner \longrightarrow Contractor
Upgrade/New Branch Circuits	\$250 - \$700 per circuit	Homeowner \longrightarrow Contractor
	PG&E Territory: \$125 - \$500	$\underset{\text{Homeowner}}{\bigoplus} \text{Homeowner} \longrightarrow \qquad \text{Contractor} \qquad \underset{\text{Contractor}}{\bigoplus}$
	Arcata, CA: \$129 Humboldt County: \$132	— or — \downarrow
Permit Costs	Other Northern Counties: \$125 - \$140 SDG&E Territory: City \$128, County \$136	Homeowner — City/County
	Contractor "Bundled" Fee: \$500 (All Permit + Labor Fees in one)	$\operatorname{Homeowner} \to \operatorname{City/County}$
Trenching & Conduit	\$5 - \$15 per linear foot (Homeowner Property)	$\underset{\text{Homeowner}}{\textcircled{\text{Homeowner}}} \rightarrow \qquad \underset{\text{Contractor}}{\textcircled{\text{Contractor}}}$

Objective 2. Understand the costs incurred by all parties when upgrading electrical service to residential sites

Activity 1: Identify typical costs and Activity 2: Identify/explain factors that impact these costs

Contractor	Cost Description	Average cost	Transaction
Bills Utility for	Transformer Upgrade	\$6,000 - \$8,000	$Homeowner \rightarrow Utility$
Labor \$2,000 to \$30,000+	Pole Replacement	\$9,000 - \$11,000	$\overset{\text{Homeowner}}{\longrightarrow} \text{Utility} \overset{\text{Homeowner}}{\longrightarrow} $
Utility provides the materials Wire Conduit Pole changeouts Transformer upgrades 	Total New or Upgraded Utility Equipment Service	\$10,000 - \$30,000	$$ Utility \longrightarrow Contractor
	Overhead line, service line only	\$2,850 - \$4,500 (Utility supplies materials)	Utility -> Contractor
	Overhead line with a new Utility pole	\$11,000 - \$13,000 (Utility supplies materials)	$$ Utility \longrightarrow Contractor
	Overhead to underground conversion	\$13,000 - \$18,000 (Utility supplies materials)	$$ Utility \longrightarrow Contractor
	Trenching for underground upgrades	\$180 to \$200 per Ilinear foot (Utility/Public Property)	$$ Utility \longrightarrow Contractor

All costs that exceed the Rule 15 and 16 allowance are passed on to the customer for the service upgrade

And avoiding redecorating...

BUILDING TECHNOLOGY & URBAN SYSTEMS DIVISION Energy Technologies Area

Photo – Eric Morill

Available Capacity to Electrify

19

Available Capacity to Electrify

How Frequent Are Panel Upgrades?

TECH Clean California

- of Panel Upgrades 480 panel upgrades out of 10,446 heat pump upgrades (4.6%)
 - Most panel upgrades were from 200A to 300A 0 (n=239)
 - Smaller set of upgrades were from 100A to 200A 0 (n=135)

PNNL home occupant survey

Count

What Drives Panel Upgrades?

- Over-simplified approaches by electricians Don't use paths in National Electric Code (NEC) 1.

 - Not enough space in the panel 0
 - Not enough amperage 0
 - Habit... 0
- NEC not developed for electrification retrofits 2.
 - Likely too conservative 0
 - No balance between nuisance tripping and climate calamity Inconsistent national adoption keeps the market behind the code 0
 - 0
- Local code authorities are not prepared 3.
 - Some will not allow circuit sharing/smart panels 0
- Current driver is adding PV and EV (and additions/remodels?) 80% rule for back-fed PV interconnections 4.

 - 125% continuous load treatment for EVs 0
 - Future drivers: cooking, heat pumps, clothes drying, pools 0

Sometimes an update is needed

Old, unsafe or damaged panels

Fuse Boxes

Zinsco/GTE Sylvania and Federal Pacific panels have dangerous design flaws and should be removed

Do we have enough physical space in panels?

- BayRen Home Electrification Checklist
 - 100A: 31% have free space (70% need "space" solutions to add loads)
 - 200A: 48% have free space
- Visually evaluating this in Citizen Science study as well:

Solving the "No Space" Problem

- Tandem breakers (panel and code limits)
- Sub-panel
- Circuit sharing/splitting

Utilizing the NEC - the Watt Diet Calculator

Watt Diet Strategies

Basic strategies for avoiding an electrical panel upsize can include:

01 - Select appliances that combine two functions into one machine

For example, the kitchen range (combining an oven and cooktop in one slide-in appliance), which lets us avoid a separate high power circuit for wall ovens. Another example is a combined washer/condensing dryer machine that lets us avoid needing a circuit for the clothes dryer.

02 - Select power efficient versions of the appliances

Choose the 15-amp version of a heat pump water heater instead of the 30-amp nearly identical version. Selecting high performance, power sipping versions of heat pumps instead of lower performance versions. Select power efficient and energy efficient heat pump dryers if you want a separate clothes dryer.

03 - Reduce heat loss and cooling loss by insulating and air sealing

04 - Use prioritized circuit sharing devices

Device

Volts

1

2

Device

Amps

These handy devices can automatically pause car charging while other appliances, like the dryer, finish.

05 - Use EV charger pausing circuits

These briefly pause EV charging if many devices are on at once and the main breaker is at risk of popping.

06 - Avoid overkill in your EV charger settings.

For example, pick a 20-amp or 30-amp outlet for your EV charging and avoid 50-amp chargers at home. A 20-amp outlet can deliver 100 miles of charge overnight and more than 50,000 miles of charge in a year. Bigger car batteries don't require bigger circuits; they give you flexibility about when you charge.

https://www.redwoodenergy.net/watt-diet-calculator

BUILDING TECHNOLOGY & URBAN SYSTEMS DIVISION Energy Technologies Area

		ste			
20	8	کې Lights/Plug ک	\$ Lights/Plug	8	120
20	8	َنَ اللهِ Lights/Plug	와 Lights/Plug ()	8	120
20	8	ني Lights/Plug 5	업 Lights/Plug ()	8	120
20	10	습니다. Garbage Disposal 8	R Kitchen Di	13	120
20	7	Refrigerator 8	Ritchen Dutlets	13	120
20	0	Spare 15	오 Dishwasher 및)	12	120
20	0	Furnace 15	R Clothes Washer	13	120
		Heat Pump			
40	20	U Centrally ω Ducted	R Pump Dryer	14	240
40	20	∾ EV Charger 🎖	G Range (cooktop	40	240
40	16		Heat Pump	12	240
			Heater		
Лн₀	use square	footage = 2000	Total Counted Pane	l Amps =	96.7
		Source - Tom	Kabat & Sean Armstrong		

All Electric 100 Amp Home (2,000 square feet)

Ducted heat pump, medium power heat pump water heater, hybrid heat pump dryer

Amp Panel

Device

Amps

Device

Volts

Improving Power Efficiency

Smart Circuit Splitters and Sharing

SimpleSwitchxliv 240V / EV Circuit Switch ...

240

BSA Electronicsxli

Neo Charge^{xdii} Smart Splitter

Programmable **Subpanels**

Eatonxxx **Energy Management** Circuit Breaker (EMCB)

Smart Circuit Pauser

Smart Circuit

Power-efficient Appliances (120V)

4.5 cu ft Condensing Washer/Dryer Combo	Heat Pump Water Heater	Through-Wall Heat Pump
10A, 1200W	8.3A, 1000W	6.3-15A, ~1400W
LG WM3998HBA	GE GeoSpring	Innova HPAC 2.0

Battery Integrated Stoves

Meter Collars

homes.lbl.gov

BUILDING TECHNOLOGY & URBAN SYSTEMS DIVISION Energy Technologies Area

Circuit Splitters and Circuit Pauser Diagrams

Circuit Splitters

- Connect two loads to same circuit
- Select priority load
- Automated switching
- Count only larger load against panel capacity

HOW IT WORKS

Circuit Pausers

- Controls one load based on demand metered with CTs
- Turns off at 80% of setpoint limit
- Do not count load against panel capacity

Share the Power

Load Sharing and Circuit Splitting

Smart circuit splitters allow two devices to share a single circuit, which can help avoid an electrical panel upgrade

Most common sharing between an EV charger and an electric clothes dryer.

	/N.					
	Neo Charge ¹¹⁶	BSA	SimpleSwitch ¹¹⁸	Splitvolt ¹¹⁹	Thermolec ¹²⁰	Evduty ¹²¹
	Smart Splitter	Electronics ¹¹⁷	240V Circuit	Splitter Switch	DCC	Smart Current
		Dryer Buddy	Switch	Concrease"		Sensor
						• CVduty
Cost (\$)	\$500 (Appliance) \$550 (Dual Car)	\$200 – 365 (several outlet versions)	\$550 (240V) \$650 (EV) \$550 (120V)	\$319	\$1,050 (DCC-9), \$945 (DCC-10)	\$500
Switch						
On/Off						
Between	Yes	Yes	Yes	Yes	NA	NA
Two						
Devices						
Continuous						Yes, shares power
Power to	Yes	Yes	No	No	NA	between appliance
Two						circuit and EV
Devices						circuit
					Yes, if total	
Monitors					panel exceeds	Yes, monitors a
Whole	N	N	N	N	80% rated load,	unit/home's
House	NO	NO	NO	NO	turns off EV	current araw, left
Loads					charging.	over current will be
					Reconnects	usea to charge EV
					automatically	

Load Sharing and Circuit Splitting

Classic peak case: come home from work and plug in car, turn up heat, start laundry

Smart device shifts EV charging later avoiding big peak

30

Evaluation of Splitters and Pausers

- Use end-use sub-metering data from occupied homes to estimate load controls potential/behavior (NEEA EULR end-use data). These homes DO NOT have controls, simply evaluating potential.
- Two types of control:
 - Lockout controls. Where two end-uses are connected to the same circuit. Control activates when both loads register >100w during the same timestep. Test all pairwise combinations of these appliances:
 - Dryer
 - DHW
 - EV
 - Hot tub
 - Cooking
 - Amp limiting controls. Where the mains are monitored and need to be limited to < 80% of a 100A limit. Controls activates when the mains are > 80% of 100A.

Lockout Controls Operation

- Typically 1-2% of the year (at most 10%)
- Goal: common end-uses with high demand and infrequent coincidence?
 - Stove + Clothes Dryer

Amp Limiting Required Load Shed

- Amp limiting periods occurred in only ~20% of homes
- Typically 1-2 kW required load shed

Required Load Shed 80% of 100A Limit n=3494

An end-Use is "capable" if it is:

- 1. In the home
- 2. On during the load shed event/timestep
- 3. At a wattage capable of satisfying the required load shed

Most end-uses resolve <1/2 of load shed events

Load Sharing and circuit splitting challenges

Codes and Regulations

- Does the NEC correctly account for these devices or include them at all?
- Does you local authority allow their use?
- NEC 220.60 "Noncoincident Loads" appears in 2023!
- NEC 220.70 "Energy Management Systems" appears in 2023!

Home Infrastructure

- If you don't have an existing electric dryer circuit to share with an EV
- Location of load doesn't easily integrate with EV pausing

Usability

- Users may not like pausing functionality for important loads
- Most loads do not "pause" easily. Think clothes dryer vs. EV.
- Need more advanced appliances, communications and solutions
| Cc
Ap | onventional "E
opliances (240 | Efficient"
V) | | |
|----------|----------------------------------|-------------------------------|---------------------------|-------------------------------------|
| | Product Type | Electric Dryer-Energy
Star | Heat Pump Water
Heater | Split Heat Pump
2-4 Tons |
| | Maximum Rating | 30A, 7,200W | 19A, 4,500W | 18-29 Amps,
4,300W-7,000W |
| | Make and Model | Whirlpool WED5620HW | Rheem Prestige | York YZH060 Series |
| | Image | | | |

Power Efficient Appliances (120V)

Power at the panel is the limiting factor, but reducing appliance voltage can be another strategy

Product Type	4.5 cu ft Condensing Washer/Dryer Combo	Heat Pump Water Heater	Low-Amp Window Heat Pump	120V Mini-Split Heat Pump
Maximum Rating (Amps, Watts)	10A, 1200W	8.3A, 1000W	6.3-15A, ~ 1400W	10.4A, 1090W
Make and Model	LG WM3998HBA	GE GeoSpring	Innova HPAC 2.0	LG LS-120HXV
Image				

homes.lbl.gov

Power Efficient Appliances Example Calculation

Typical Energy Efficient Appliance		Power Efficient Appliance	
Device	Power (W)	Device	Power (W)
2 ton Heat Pump	4,400	120V minisplits	1,100
			(x2?)
Water heater	4,500	120V HPWH	1,000
Clothes Dryer	7,200	120V HP washer/dryer	1,200
Range	9,600	120V 2-burner cooktop and	1,200
		120V Countertop Oven	1,200
EV charger	7,200	EV-pauser/circuit sharer	0
Total	32,900		5,700

Bigger Challenges...

- Solar PV
- Electric Vehicle Charging

The Challenge of Integrating Solar PV

- NEC 80% Rule to protect the busbar
- PV Amps = Main Breaker rating Busbar Rating x 80%
 - 100A (100A * 80%) = 20 Amp/4,800w solar
 - 200A (200A * 80%) = 40 Amp/9,600w solar
 - 300A (300A * 80%) = 60 Amp/14,400w solar
- Solutions:
 - 1. <u>De-rate the main breaker (e.g.,</u> from 200 to 180A allows 20A more of solar), but need to ensure the load from the grid is still served.
 - 2. Install <u>solar ready main panel</u> that avoids back-feeding the solar circuit through the busbar. Akin to a line-side connection, but built into the panel itself.
 - 3. <u>Line-side connection</u> that does not use the busbar (connect solar upstream of the service disconnect. Each utility regulates these interconnections differently.
 - 4. Feed the existing main breaker into a sub-panel with a higher busbar ampere rating. I don't fully understand this one...

41 homes.lbl.gov

Meter Collar Solutions bypass internal busbar current limit

EXISTING PRODUCT - SOLAR

- Solar Adapter
 - UL Listed (414 Meter Sockets)
 - 5 mins to install, 30 mins to interconnect
 - 200A continuous rating, utility power
 - 80A continuous rating, PV input (15kW)
 - Integrated PV breaker
 - Optional smart module RGM and cellular comms
 - Approved in 20 states
 - 15,000 units installed

PG&E Green Meter Adapter

WE TURNED THE METER SOCKET INTO AN ELECTRICAL OUTLET

Our simple, affordable, and universal meter adapter works on virtually every home and eliminates the need for service panel connections or replacements

ConnectDER

BUILDING TECHNOLOGY & URBAN SYSTEMS DIVISION Energy Technologies Area

Plug-in adapter uses meter socket instead of the service panel

ConnectDER

Integrating transportation

- Current poor public charging infrastructure:
 - Need to be able to charge at home
- EV could easily be the biggest home load: up to 50 A
 - Need to restrict power requirement to 7.2kW
 - Encourage low-power charging good for most households
 - Use timers/smart circuit sharing/meter collars

43

New ideas?

Challenge Overview

The Equitable and Affordable Solutions to Electrification (EAS-E) Home Electrification Prize provides up to \$2.4 million in prizes for innovative solutions that advance electrification retrofits of residential homes across all building types and geographies.

BUILDING TECHNOLOGY & URBAN SYSTEMS DIVISION

Leave a Message

Energy Technologies Area

New Ideas?

- Battery-integrated appliances: Battery-integrated stove never draws more than 1500W, compared to several kW for traditional stove
- Using thermal storage to boost capacity so lower power lower capacity heat pumps can be used = grid responsive HVAC
- Cold Climate heat pumps (avoiding high power electric resistance backup)

Residential Cold-Climate Heat Pump Technology Challenge

New Ideas?

20A Induction Range Design Test CalFlexHub Project

- Develop a fully functional 20A range
 - Normally requires 40A circuit
 - Use power sharing

1. max. 1800/2100W zone 2. max. 1200/1500W zone 3. max. 2300/3700W zone 4. max. 1200/1500W zone 5. Control panel

New Ideas – updating NEC for electrification retrofits

- Updating NEC to better accommodate home electrification
 - What are actual coincident loads?
 - How close are most homes to panel capacity and ability to add loads?
 - Allow load reductions/load control
 - Power Efficient Appliances
 - Circuit Sharing
 - Energy storage

NFPA	
National Electrical International Electrical Code Serie 2023	Code*
And and a second second	(néc)

NEC Options

NEC 220.87

- Existing loads based on metering data (15 minute)
- Total load = (Metered Load) x 1.25 + New Load

NEC 220.83

- Existing loads as a bottom-up summation of connected loads with different treatment when adding HVAC
- No New HVAC: 8,000 watts + 40% of remaining connected loads (including heating and cooling)
- New HVAC: 8,000 watts + 40% of remaining connected loads + max(heating, cooling)

Comparison of load calculation options

Same house: Calculations using both 220.83(B) and 220.87

Per NEC 220.83(B): no room left for HPWH

Per NEC 220.87: plenty of room for HPWH

Images from from Josie Gaillard

homes.lbl.gov

Comparison of load calculation options

Same house: Calculations using both 220.83(B) and 220.87

Fraction of Homes

50

220.87 Determining Existing Loads. The calculation of a feeder or service load for existing installations shall be permitted to use actual maximum demand to determine the existing load under all of the following conditions:

 The maximum demand data is available for a 1-year period.

Exception: If the maximum demand data for a 1-year period is not available, the calculated load shall be permitted to be based on the maximum demand (the highest average kilowatts reached and maintained for a 15-minute interval) continuously recorded over a minimum 30-day period using a recording ammeter or power meter connected to the highest loaded phase of the feeder or service, based on the initial loading at the start of the recording. The recording shall reflect the maximum demand of the feeder or service by being taken when the building or space is occupied and shall include by measurement or calculation the larger of the heating or cooling equipment load, and other loads that might be periodic in nature due to seasonal or similar conditions. This exception shall not be permitted if the feeder or service has a renewable energy system (i.e., solar photovoltaic or wind electric) or employs any form of peak load shaving.

- (2) The maximum demand at 125 percent plus the new load does not exceed the ampacity of the feeder or rating of the service.
- (3) The feeder has overcurrent protection in accordance with 240.4, and the service has overload protection in accordance with 230.90.

Determining Existing Loads

- Overall, improve clarity and usability
- Update language to explicitly allow smart meter data
 - Lack of clarity on 60- vs. 15-min data
 - Add adjustment from 60- to 15-min
- Clarify calculation procedures when <1year of data is available
- Add method for solar PV based on peak output of inverter or real-time estimates of output
- Question whether 125% assumption of Continuous Loads is appropriate
- Currently lacks clear discussion of how to account for new loads (explicitly link with 220.83)

(A) Where Additional Air-Conditioning Equipment or Electric Space-Heating Equipment Is Not to Be Installed. The percentages listed in Table 220.83(A) shall be used for existing and additional new loads.

Load calculations shall include the following:

- General lighting and general-use receptacles at 33 voltamperes/m² or 3 volt-amperes/ft² as determined by 220.42
- (2) 1500 volt-amperes for each 2-wire, 20-ampere smallappliance branch circuit and each laundry branch circuit covered in 210.11(C) (1) and (C) (2)
- (3) The nameplate rating of the following:
 - a. All appliances that are fastened in place, permanently connected, or located to be on a specific circuit
 - B. Ranges, wall-mounted ovens, counter-mounted cooking units
 - c. Clothes dryers that are not connected to the laundry branch circuit specified in item (2)
 - d. Water heaters

(B) Where Additional Air-Conditioning Equipment or Electric

Space-Heating Equipment Is to Be Installed. The percentages listed in Table 220.83(B) shall be used for existing and additional new loads. The larger connected load of air conditioning or space heating, but not both, shall be used.

Other loads shall include the following:

- General lighting and general-use receptacles at 33 voltamperes/m² or 3 volt-amperes/ft² as determined by 220.42
- (2) 1500 volt-amperes for each 2-wire, 20-ampere smallappliance branch circuit and each laundry branch circuit covered in 210.11(C) (1) and (C) (2)
- (3) The nameplate rating of the following:
 - All appliances that are fastened in place, permanently connected, or located to be on a specific circuit
 - b. Ranges, wall-mounted ovens, counter-mounted cooking units
 - c. Clothes dryers that are not connected to the laundry branch circuit specified in item (2)
 - d. Water heaters

Table 220.83(A) Without Additional Air-Conditioning or Electric Space-Heating Equipment

Load (kVA)	Percent of Load	controlled s
First 8 kVA of load at	100	First 8 kVA of
Remainder of load at	40	Remainder of

Table 220.83(B) With Additional Air-Conditioning or Electric Space-Heating Equipment

Load	Percent of Load
Air-conditioning equipment	100
Central electric space heating	100
Less than four separately controlled space-heating units	100
First 8 kVA of all other loads	100
Remainder of all other loads	40

(A) Where Additional Air-Conditioning Equipment or Electric Space-Heating Equipment Is Not to Be Installed. The percentages listed in Table 220.83(A) shall be used for existing and additional new loads.

Load calculations shall include the following:

- General lighting and general-use receptacles at 33 voltamperes/m² or 3 volt-amperes/ft² as determined by 220.42
- (2) 1500 volt-amperes for each 2-wire, 20-ampere smallappliance branch circuit and each laundry branch circuit covered in 210.11(C) (1) and (C) (2)
- (3) The nameplate rating of the following:
 - a. All appliances that are fastened in place, permanently connected, or located to be on a specific circuit
 - B. Ranges, wall-mounted ovens, counter-mounted cooking units
 - c. Clothes dryers that are not connected to the laundry branch circuit specified in item (2)
 d. Water heaters

(B) Where Additional Air-Conditioning Equipment or Electric Space-Heating Equipment Is to Be Installed. The percentages listed in Table 220.83(B) shall be used for existing and additional new loads. The larger connected load of air conditioning or space heating, but not both, shall be used.

Other loads shall include the following:

- General lighting and general-use receptacles at 33 voltamperes/m² or 3 volt-amperes/ft² as determined by 220.42
- (2) 1500 volt-amperes for each 2-wire, 20-ampere smallappliance branch circuit and each laundry branch circuit covered in 210.11(C) (1) and (C) (2)
- (3) The nameplate rating of the following:
 - All appliances that are fastened in place, permanently connected, or located to be on a specific circuit
 - b. Ranges, wall-mounted ovens, counter-mounted cooking units
 - c. Clothes dryers that are not connected to the laundry branch circuit specified in item (2)
 - d. Water heaters

Table 220.83(A) Without Additional Air-Conditioning or Electric Space-Heating Equipment

	Less unai
Percent of Load	contro
100	First 8 kV
40	Remaind
	Percent of Load 100 40

No new A/C or electric heating

New A/C or electric heating (always treated at 100% of nameplate rating)

Table 220.83(B) With Additional Air-Conditioning or Electric Space-Heating Equipment

Load	Percent of Load
Air-conditioning equipment	100
Central electric space heating	100
Less than four separately controlled space-heating units	100
First 8 kVA of all other loads	100
Remainder of all other loads	40

(A) Where Additional Air-Conditioning Equipment or Electric Space-Heating Equipment Is Not to Be Installed. The percentages listed in Table 220.83(A) shall be used for existing and additional new loads.

Load calculations shall include the following:

- General lighting and general-use receptacles at 33 voltamperes/m² or 3 volt-amperes/ft² as determined by 220.42
- (2) 1500 volt-amperes for each 2-wire, 20-ampere smallappliance branch circuit and each laundry branch circuit covered in 210.11(C) (1) and (C) (2)
- (3) The nameplate rating of the following:
 - a. All appliances that are fastened in place, permanently connected, or located to be on a specific circuit
 - B. Ranges, wall-mounted ovens, counter-mounted cooking units
 - c. Clothes dryers that are not connected to the laundry branch circuit specified in item (2)
 - d. Water heaters

(B) Where Additional Air-Conditioning Equipment or Electric

Space-Heating Equipment Is to Be Installed. The percentages listed in Table 220.83(B) shall be used for existing and additional new loads. The larger connected load of air conditioning or space heating, but not both, shall be used.

Other loads shall include the following:

- General lighting and general-use receptacles at 33 voltamperes/m² or 3 volt-amperes/ft² as determined by 220.42
- (2) 1500 volt-amperes for each 2-wire, 20-ampere smallappliance branch circuit and each laundry branch circuit covered in 210.11(C) (1) and (C) (2)
- (3) The nameplate rating of the following:
 - All appliances that are fastened in place, permanently connected, or located to be on a specific circuit
 - b. Ranges, wall-mounted ovens, counter-mounted cooking units
 - c. Clothes dryers that are not connected to the laundry branch circuit specified in item (2)
 - d. Water heaters

Table 220.83(A) Without Additional Air-Conditioning or Electric Space-Heating Equipment

Load (kVA)	Percent of Load	controlled :
First 8 kVA of load at	100	First 8 kVA of
Remainder of load at	40	Remainder of

3 watts/ft² for general lighting and plugs. For comparison, Table 220.42(A) lists assumptions for other building types. ALL <2.2 and most 1-1.5 watts/ft².

Table 220.83(B) With Additional Air-Conditioning or Electric Space-Heating Equipment

Load	Percent of Load
Air-conditioning equipment	100
Central electric space heating	100
Less than four separately controlled space-heating units	100
First 8 kVA of all other loads	100
Remainder of all other loads	40

(A) Where Additional Air-Conditioning Equipment or Electric Space-Heating Equipment Is Not to Be Installed. The percentages listed in Table 220.83(A) shall be used for existing and additional new loads.

Load calculations shall include the following:

- General lighting and general-use receptacles at 33 voltamperes/m² or 3 volt-amperes/ft² as determined by 220.42
- (2) 1500 volt-amperes for each 2-wire, 20-ampere smallappliance branch circuit and each laundry branch circuit covered in 210.11(C)(1) and (C)(2)
- (3) The nameplate rating of the following:
 - a. All appliances that are fastened in place, permanently connected, or located to be on a specific circuit
 - B. Ranges, wall-mounted ovens, counter-mounted cooking units
 - c. Clothes dryers that are not connected to the laundry branch circuit specified in item (2)
 - d. Water heaters

(B) Where Additional Air-Conditioning Equipment or Electric

Space-Heating Equipment Is to Be Installed. The percentages listed in Table 220.83(B) shall be used for existing and additional new loads. The larger connected load of air conditioning or space heating, but not both, shall be used.

Other loads shall include the following:

- General lighting and general-use receptacles at 33 voltamperes/m² or 3 volt-amperes/ft² as determined by 220.42
- (2) 1500 volt-amperes for each 2-wire, 20-ampere smallappliance branch circuit and each laundry branch circuit covered in 210.11(C)(1) and (C)(2)
- (3) The nameplate rating of the following:
 - All appliances that are fastened in place, permanently connected, or located to be on a specific circuit
 - b. Ranges, wall-mounted ovens, counter-mounted cooking units
 - c. Clothes dryers that are not connected to the laundry branch circuit specified in item (2)
 - d. Water heaters

Table 220.83(A) Without Additional Air-Conditioning or Electric Space-Heating Equipment

Load (kVA)	Percent of Load	Less than four controlled s
First 8 kVA of load at	100	First 8 kVA of
Remainder of load at	40	Remainder of

1,500 watts for each small appliance and laundry branch circuit

Table 220.83(B) With Additional Air-Conditioning or Electric Space-Heating Equipment

Load	Percent of Load
Air-conditioning equipment	100
Central electric space heating	100
 Less than four separately controlled space-heating un 	100 its
First 8 kVA of all other loads	100
Remainder of all other loads	40

(A) Where Additional Air-Conditioning Equipment or Electric Space-Heating Equipment Is Not to Be Installed. The percentages listed in Table 220.83(A) shall be used for existing and additional new loads.

Load calculations shall include the following:

- General lighting and general-use receptacles at 33 voltamperes/m² or 3 volt-amperes/ft² as determined by 220.42
- (2) 1500 volt-amperes for each 2-wire, 20-ampere smallappliance branch circuit and each laundry branch circuit covered in 210.11(C) (1) and (C) (2)
- (3) The nameplate rating of the following:
 - All appliances that are fastened in place, permanently connected, or located to be on a specific circuit
 - B. Ranges, wall-mounted ovens, counter-mounted cooking units
 - c. Clothes dryers that are not connected to the laundry branch circuit specified in item (2)
 - d. Water heaters

(B) Where Additional Air-Conditioning Equipment or Electric Space-Heating Equipment Is to Be Installed. The percentages listed in Table 220.83(B) shall be used for existing and addi-

tional new loads. The larger connected load of air conditioning or space heating, but not both, shall be used.

Other loads shall include the following:

- General lighting and general-use receptacles at 33 voltamperes/m² or 3 volt-amperes/ft² as determined by 220.42
- (2) 1500 volt-amperes for each 2-wire, 20-ampere smallappliance branch circuit and each laundry branch circuit covered in 210.11(C) (1) and (C) (2)
- (3) The nameplate rating of the following:
 - All appliances that are fastened in place, permanently connected, or located to be on a specific circuit
 - b. Ranges, wall-mounted ovens, counter-mounted cooking units
 - c. Clothes dryers that are not connected to the laundry branch circuit specified in item (2)
 - d. Water heaters

Table 220.83(A) Without Additional Air-Conditioning or Electric Space-Heating Equipment

Load (kVA)	Percent of Load	controlled
First 8 kVA of load at	100	First 8 kVA of
Remainder of load at	40	Remainder o

Do we need explicit language addressing EV, stationary batteries, etc.?

Table 220.83(B) With Additional Air-Conditioning or Electric Space-Heating Equipment

Load	Percent of Load	
Air-conditioning equipment	100	
Central electric space heating	100	
Less than four separately controlled space-heating units	100	
First 8 kVA of all other loads	100	
Remainder of all other loads	40	

Energy Management Systems

.

. . .

From Article 750

(1) **Current Setpoint.** A single value equal to the maximum ampere setpoint of the EMS shall be permitted for one or more of the following:

- (1) For calculating the connected load per 220.70
- (2) For the maximum source current permitted by EMS control

From Article 220

220.70 Energy Management Systems (EMSs). If an energy management system (EMS) is used to limit the current to a feeder or service in accordance with 750.30, a single value equal to the maximum ampere setpoint of the EMS shall be

permitted to be used in load calculations for the feeder or service.

The setpoint value of the EMS shall be considered a continuous load for the purposes of load calculations.

Energy Management Systems

From Article 750

(1) **Current Setpoint.** A single value equal to the maximum ampere setpoint of the EMS shall be permitted for one or more of the following:

Does a single value really suffice?

- (1) For calculating the connected load per 220.70
- (2) For the maximum source current permitted by EMS control

From Article 220

220.70 Energy Management Systems (EMSs). If an energy management system (EMS) is used to limit the current to a feeder or service in accordance with 750.30, a single value equal to the maximum ampere setpoint of the EMS shall be

permitted to be used in load calculations for the feeder or service.

The setpoint value of the EMS shall be considered a continuous load for the purposes of load calculations. How do we account for tech that controls only certain loads (e.g., EV and DHW) based on the whole dwelling real-time demand?

What About Different Load Types Adding Differently?

- HVAC, EV, DHW, Laundry and Cooking might add very differently.
- Currently the code recognizes HVAC as being different and treats it with a 100% multiplier.
- We could derive distinct slope/multiplier values for different load types, if this is justified in the data.
 - New Peak = Intercept + 0.8 x HVAC + 0.5 x DHW + 0.95 x EV + 0.2 x All Others
 - This increases complexity and makes analysis more difficult.

Predicting 15-minute from 60-minute peak demand data (add as option in NEC 220.87)

- The current electrical code allow us to use 15-minute dwelling peak demand data in determining the existing load on a service. But the vast majority of household smart meters produce hourly data...
- Derive conversion based on homes with both the 15-minute and 60-minute whole-dwelling peak demand
 - HomeIntel (HEA) (n=1,730)
 - Pecan Street Dataport (n=947)
 - NEEA EULR (n=210)
 - Efficiency Vermont (n=???)
 - Lumin smart panel (n=???)
 - Others?
- To be sufficiently conservative in the code
 - We ARE NOT looking for the best prediction (minimize error)
 - We ARE looking for the prediction that almost never under-estimates the 15-minute value
 - We DO need to choose an approach based on how it treats low- vs high-demand homes

Using Metered Data

Predicting 15-minute from 60minute peak demand data

60-Minute Peak Demand (kW)

BUILDING TECHNOLOGY & URBAN SYSTEMS DIVISION Energy Technologies Area

Load Fractions by End-Use Type

- "Load fractions" (LF) are used in the NEC to estimate the amount of load that is added to the dwelling peak.
 - E.g., 5 kW resistance water heater, with a load fraction of 0.6, adds 3.0 kW to the peak (5*0.60)
 - "Standard" LF look at the demand of each device during the peak period appropriate for existing loads
 - "Synthetic" LF compare dwelling peak demand with and without the device appropriate for retrofit assessments
- NEEA EULR data
 - 210 homes in the Pacific Northwest with select electrical end-uses (e.g., heat pumps, resistance water heating)
 - 2018-2022 (ongoing)
 - End-use circuit sub-metering
 - 15-minute time-step
 - ALL RESULTS ARE PRELIMINARY, MAY INCLUDE ERRORS, AND ARE SUBJECT TO CHANGE !!!!
- Other end-use data sets to be analyzed
 - Pecan Street Dataport (n=957) (analysis is 80% complete)
 - Lumin Smart Panel (n=???) (working on NDA) (strong source for EV data)
 - Efficiency Vermont dwelling peak demand data before and after heat pump retrofits (n=???)

https://neea.org/data/nw-end-use-load-research-project/energy-metering-study-data#

Max Demand (kW)

PRELIMINARY, SUBJECT TO CHANGE!

Compared to Its Maximum Demand, How Much Do End-Uses Operate During the Dwelling Peak?

Calculating Standard and Synthetic Load Fractions

- Mains Peak
 - 2020-07-18 23:45
 - 2.82 kW
- AC max and peak
 - 2020-07-18 23:45
 - 1.84 kW
- Mains AC peak
 - 2020-06-02 23:45
 - 1.38 kW
- AC Contribution to Peak
 2.82 1.38 = 1.44 kW
- Load Fractions
 - Standard: 1.84 / 1.84 = 100%
 - Synthetic: 1.44 / 1.84 = 78%

Load Fractions by End-Use Type

Initial Thoughts on End-Use Load Fractions

- Three categories to include in NEC calculations:
 - <u>Household appliances</u>: **<20%**
 - <u>Thermostat-controlled devices</u>: **40-60%**
 - <u>Electric vehicle charging</u>: 100%
- Other data sources will be analyzed and merged with the EULR data using standardized end-use categories

Mean Load Fraction

https://neea.org/data/nw-end-use-load-research-project/energy-metering-study-data#

Almost never are very many loads near their maximum demand

Circuit Number

Rethinking Rebates?

- Currently \$2500 for a panel upsize (IRA up to \$4000 + \$2500 for additional wiring)
 - Allows high power devices and higher peak load from home to utility
 - New distribution and transformer upsizing these costs passed on to ratepayers
- We need rebates for *avoiding* panel replacement
 - **120V HPWH**
 - Small split HP systems
 - 120V cooking
 - Battery and energy storage systems (whole home or in appliances)
 - EV pausers
 - Meter collars
 - Reduces grid stress in the future as we electrify
- Eliminate incentives for 200 -> 300Amp panel upgrades

homes.lbl.gov

Want to Be Involved?

- Share data (panel amperage, peak data, end-uses)
- Review draft code language prior to sharing with NFPA (before April 2023)
- Local adoption of code provisions:
 - Advocate with the California Building Standards Commission
 - Convene national code stakeholders group to support local adoption of low-power provisions prior to 2026 code launch

Summary

- Use existing NEC options (with guidance available online)
- Use power efficient equipment preferably 120V
- Use circuit sharing particularly for EVs (most "pauseable" load)
 - Consider lower power EV charging
- Meter collars allow quick addition of big loads
- Traditional load reduction helps (lower capacity heating/cooling equipment)

In the (near) future

- Storage technologies at whole house and individual appliance level
- Updated NEC to allow new technologies & improve existing calculations
- More resources to guide contractors and homeowners becoming available
- More power efficient options

Resources

- For electrification big picture: Rewiring America and Rewiring
 Communities
- For power-restricted homes: Redwood Energy Pocket Guide

SAM GALISCH & LAURA FRASER

Rewiring Communities:

A Plan to Accelerate Climate Action and Environmental Justice By Investing in Household Electrification at the Local Level

¹ Adam Zurofsky,² Jeffrey Schub,³ John Rhodes,⁴ Tony Curnes,⁵ and Sam Calisch⁶

Coalition for Green Capital

REDWOOD ENERGY

February 2021

homes.lbl.gov 71

BUILDING TECHNOLOGY & URBAN SYSTEMS DIVISION Energy Technologies Area

Resources

https://www.natethehousewhisperer.co m/electrify-everything-course.html

https://www.switchison.org/

https://www.rewiringamerica.or g/electrify-home-guide

BUILDING DECARBONIZATION COALITION
Questions?

Extra slides

Breaker curve

Figure 1: Thermal-magnetic Time/Current Characteristic Curve

Tips for avoiding an expensive electric panel upgrade:

- Consider sharing existing 240V circuits between two devices using a "smart splitter" like those from NeoCharge, SplitVolt and DryerBuddy.
- To free up old 240V circuits, upgrade to more efficient appliances, such as a combined 120V washer dryer, a kitchen range that combines an induction cooktop with an oven on a single circuit, or replacing a 240 volt oven with a plug in air fryer, instapot, or other combined device.
- Consider a load monitoring device to "throttle" EV chargers to available household power, such as the SimpleSwitch or DCC-9 devices.
- Limit EV charging. Note that most EVs will gain over 40 miles of range after 10 hours of charging on a standard120V outlet. This satisfies most commutes, and longer trips can be handled via the growing network of public DCfast-charging stations.
- If you are considering a panel upgrade see this related report by PG&E and others.
- Plan in advance for future loads, like EV chargers, heat pumps, and induction cooktops. If panel capacity is limited, spend more for the most efficient versions of each appliance since it can avoid much more expensive panel upgrade costs.

Findings About Costs - Homeowner Side

"Homeowner Equipment Service Upgrade Fee" refers to the electrical panel and associated work behind the meter

Cost Description	Average cost	Transaction
Homeowner Equipment Service Upgrade Fee	\$1,300 - \$5,000	$\underset{\text{Homeowner}}{\bigoplus} \text{Homeowner} \longrightarrow \text{Contractor} \underset{\bigoplus}{\bigoplus} $
Breaker Panel Upgrade	\$1,300 - \$5,000	$\underset{\text{Homeowner}}{\bigoplus} \text{Homeowner} \longrightarrow \text{Contractor} \underset{\bigoplus}{\bigoplus} $
Upgrade/New Branch Circuits	\$250 - \$700 per circuit	$\underset{\text{Homeowner}}{\bigoplus} \text{Homeowner} \longrightarrow \text{Contractor} \underset{\bigoplus}{\bigoplus} $
	PG&E Territory: \$125 - \$500	$\underset{\text{Homeowner}}{\textcircled{\text{Homeowner}}} \rightarrow \qquad \underset{\text{Contractor}}{\textcircled{\text{Contractor}}}$
	Arcata, CA: \$129 Humboldt County: \$132	— or — \downarrow
Permit Costs	Other Northern Counties: \$125 - \$140 SDG&E Territory: City \$128, County \$136	$\stackrel{\frown}{\boxplus} Homeowner} \longrightarrow City/County$
	Contractor "Bundled" Fee: \$500 (All Permit + Labor Fees in one)	$\underset{\text{Homeowner}}{\textcircled{\text{Homeowner}}} \rightarrow \qquad \underset{\text{City/County}}{\textcircled{\text{City/County}}}$
Trenching & Conduit	\$5 - \$15 per linear foot (Homeowner Property)	$\underset{\text{Homeowner}}{\textcircled{\text{Homeowner}}} \rightarrow \qquad \underset{\text{Contractor}}{\textcircled{\text{Contractor}}}$

Utility Equipment Costs that the Customer May Pay

Cost Description	Average cost	Transaction	
Transformer Upgrade	\$6,000 - \$8,000	$\overset{\text{Homeowner}}{\longrightarrow} \text{Utility} \overset{\text{Homeowner}}{\longrightarrow} \text{Utility}$	
Pole Replacement	\$9,000 - \$11,000	$\overset{\text{Homeowner}}{\longrightarrow} \text{Utility} \overset{\text{Homeowner}}{\longrightarrow} \text{Utility}$	
Total New or Upgraded Utility Equipment Service	\$10,000 - \$30,000	$ \underbrace{} $ Utility \longrightarrow Contractor	
Overhead line, service line only	\$2,850 - \$4,500 (Utility supplies materials)	$ \underbrace{} $ Utility \longrightarrow Contractor	
Overhead line with a new Utility pole	\$11,000 - \$13,000 (Utility supplies materials)	$ \underbrace{} $ Utility \longrightarrow Contractor	
Overhead to underground conversion	\$13,000 - \$18,000 (Utility supplies materials)	$ \underbrace{} $ Utility \longrightarrow Contractor	
Trenching for underground upgrades	\$180 to \$200 per Ilinear foot (Utility/Public Property)	$$ Utility \longrightarrow Contractor	

N|V|5

Service Upgrades for Electrification Retrofits Study Final Report May 27, 2022

Courtesy of Emily Higbee, Redwood Energy Research Director

The above image displays ownership of basic electrical service equipment that will be assessed by an electrification retrofit contractor to complete an overhead Service Upgrade. All the components depicted in the diagram are within the scope of an electrical Service Upgrade discussed in the report except for new wires to the reat of the home.

EY LAB

	PG&E Service Upgrades for Electrification Retrofits Study Final Report	NV5.COM 1	PG&E Service Upgrades for Electrification Retrofits Study Final Report	NV5.COM 2
ה A BUII	LDING TECHNOLOGY & ORBAN SYSTEMS DIVISION			
Y LAB Energy	Technologies Area			

CONTRIBUTORS

NV5 INC.

Shoshana Pena, Director of Program Services Collin Smith, Program Manager Greg Butsko, Vice President of Distribution Services Rick Gardner, Director of Distribution Services

REDWOOD ENERGY

Sean Armstrong, Principal Emily Higbee, Research Director Dylan Anderson, Senior Staff Researcher Rebecca Hueckel, Senior Staff Researcher

PROJECT SPONSORS

Pacific Gas and Electric Company: Robert Kasman, Victoria Culter, and Kati Pech San Diego Gas and Electric Company: Kelvin Valenzuela and Dan Hudgins