NHPC'23 SEATTLE © SC April 17-20, 2022 | Seattle, Washington

THE COSTS OF DECARBONIZING EXISTING MULTIFAMILY BUILDINGS

PRESENTERS

Iain Walker Staff Scientist LBNL

Bringing Science Solutions to the World

Brennan Less Scientific Eng. Associate LBNL

Núria Casquero-Modrego Postdoc LBNL

LEARNING OBJECTIVES

At the conclusion of this session, participants:

- Identify scalable and affordable solutions that we can implement to achieve decarbonization in existing multifamily buildings.
- Outline what approaches we can use to reduce the costs of energy retrofits of multifamily buildings.
- Understand how the actual economic and technological strategies are necessary for the decarbonization process of the existing building stock in the US.

Introduction

Today's Presentation \rightarrow Need better Information on Decarbonization Costs

Inform Policy

- Where to focus programs
- Support decision-making

Inform R&D

- New database on MF
- Identify key cost barriers

Inform Industry

- New products
- New business opportunities and models
- Challenges with the adoption of decarbonization technologies

Introduction

To Be Considered Next \rightarrow Need Better Information on Decarbonization Issues Specific to MF Buildings

Solar PV

- Community Solar?
- Billing policy?

EV Charging

- How to give equal access
- How to bill

► Benefit Occupants or Owners?

- Transportable solutions?
- Bill switching from common gas to unit-based electricity
- Who saves?
- Identifying opportunities for collaboration and education.

NHPC'23 SEATTLE

Common Equipment

- How to replace central boilers
- How to replace central HVAC

Energy Equity

- Do rents go up?
- Do bills go up?
- Decarbonization while occupied?

Building Codes

 More work is needed address decarbonization and electrification goals

NON-ENERGY BENEFITS

Healthier Homes

Health Reasons to Eliminate Fossil Fuels

- **Burning fossil fuels:** emit several contaminants of concern:
 - PM_{2.5}, NO₂, CO, aldehydes and leaking unburned CH₄
 - 1000's of lives and Billions of dollars

In the home:

- Main sources are cooking and poor appliance venting
- This would serve Low-Income/Disadvantaged households the most
 - More likely to have poorly vented appliances
 - Smaller dwellings have higher contaminant concentrations
 - Low income dwellings less likely to have ventilation systems

► Outside air: PM_{2.5} & NO₂

Environmental Justice Issue – often worse in disadvantaged communities

Safer Homes

Key safety issues are:

- Carbon monoxide (CO) → No concerns if home is all-electric
- Fire safety → No flames
- Kitchen safety → Induction cooking inherently safer – cooler surfaces
- No gas explosions → A key risk factor for utilities
- Earthquake safety → Post-earthquake fires usually a bigger hazard than the earthquake itself

Removing Poor Appliances

Removing poor appliances: e.g. Wall Furnaces

- Wall furnaces are chronically poor at venting
- Causes moisture problems and high levels of combustion contaminants
- Even worse if kitchen of bath exhausts are used

Their low capacity serving small spaces makes them ideal candidates for low-cost replacement with a Heat Pump – possibly even a 120V Heat Pump

This would serve Low-Income households the most

- More likely to have wall furnaces
- Smaller dwellings have higher contaminant concentrations
- Low income dwellings less likely to have ventilation systems

Eliminate use of GAS cooking appliances as supplemental heat

Need to provide good low operating cost options for low income households

CHALLENGES OF DECARBONIZING EXISTING MULTIFAMILY BUILDINGS

Common Barriers with Single Family Homes

Today's biggest barriers for decarbonizing homes

Cost and affordability

Lack of workforce

- All contractors are busy
- Anecdotally: 6-12 months lead time

Lack of equipment

- Supply chain issues (COVID, Economic crisis, etc.)
- Poor US Manufacturing base
- Lack of easily available financing
- Minimize grid impacts

Current practice

• Like-for like equipment replacement

Existing buildings

 Emit all the carbon and are hardest to fix.

Lack of real estate market valuation

Equity and Decision Making

TOTAL US Homes = 123.5 millions*

Housing Units ► 68% Single Family 26% Multifamily 6% Mobile homes **Ownership** ► SF = 88% units owned SF = 28% units rented MF = 5% units owned MF = 69% units rented Low-Income **9% Single Family** 27% Multifamily

NHPC'23 SEATTLE © SCEP

Market rate vs Affordable Housing

- Access to capital
 - Large high-rise buildings vs duplex

Who pays ? Who benefits ? (Transportable solutions)

*eia data from 2020/2021

Decarbonization = Electrification = Regional Issue

Primary Heating Fuel (Plurality) 50-45-35-30-25--100 -110 -120 -90 -80 -70 Other Electric Natural Gas

- >25% of homes are already all-electric
- 75% of homes have central AC

Electric Heating

- 51% of MF units
- 27% of SF units

Electric DHW

- 55% of MF units
- 41% of SF units

Electric Cookers

- 67% of MF units
- 56% of SF units

*Residential Energy Consumption Survey (EIA) 2020

Data from the American Community Survey (2016).

DEVELOPING A COST DATABASE FOR DECARBONIZING EXISTING MULTIFAMILY BUILDINGS

Preliminary data from ongoing study
 Data to share ??? – Let us know !!!

Decarbonization Costs

DOE/LBNL Effort to Create a Database of

- Costs broken down by measure
- Energy (and calculated CO₂) savings, both real and modeled/predicted
- All costs in \$2019 and adjusted for location and inflations

Sample of Convenience

- Data not systematically recorded (e.g., separating labor materials and soft costs)
- No standard format
- Looking for buildings with significant energy reduction

Single Family Cost Database

12 Programs 1,739 Projects 10,512 Measures 3,294,946 ft² \$24,689,213

Sample of Convenience:

- Most data voluntarily provided by energy programs
- Paid contributions for 475 homes

Data Included:

- Costs Broken down by measure
- Energy (and calculated CO₂) savings
- All costs in \$2019 and nationally averaged

Single Family Cost Database - Affordability

NHPC'23

CONFERENCE PARTNERS:

SCEP

- These costs do not include rebates
- Not enough carbon emission reduction
- Costs too much for adoption at scale
- About 25% of projects used financing.

Single Family Cost Compression Package Optimization

Lowest cost options are still **\$40,000/home - \$23/ft**²

Beyond 60-70% savings requires all-electric homes

Electrification

Moderate Envelope upgradesPV

Gives good carbon savings at least cost

Added Complexity for Multifamily

Single-family vs Multifamily

- Housing type: Affordable; Market rate
- Building typology: Attached; semi-attached; isolated
- Rise: Low-; Mid-; High-Rise
- Unit ownership: Renter; owner
- Historical building: Yes; No
- Elevator: Yes; No
- Original use of the building
- Unit type: SRO; 1B; 2B; 3B; etc.
- Heating, cooling and DHW configuration: Units; Central
- Occupied during retrofit: Yes; No
- Retrofit type: Retrofit; Gut Rehabilitation
- Non-residential space: Lobby; Laundry; Corridors

Metric ► \$/unit

Database Summary – Multifamily Buildings

355 Projects (326 Detailed / 12 Non-Detailed / 17 Audits) 2475 Measures 5,200,150 ft² \$364,612,566

	Pre 1900	4
	1900-1960	27
Vintago	1960-1980	18
Vintage	1980-2000	23
	2000-2020	27
	2017	30
	2018	45
Project	2019	50
Voar	2020	47
Tear	2021	54
	2022	8
	2023	6
	< 5 month	5
	<10 months	8
Project	<15 months	11
Duration	<20 months	5
	<30 months	2
	<35 months	2
	HVAC Focused	93
Retrofit	DHW	60
	Lighting	40
i ype	Attic Insulation	37
	Wall Insulation	32

All projects - Electrification Focused

Data Base - Basic Information

Community	Urban	94%			
Community	Suburban	6%			
	Attached	25%			
Building Typology	Semi attached	7%			
	Isolated	67%			
ISOLATED SEMI-ATTACHED ATTACHED					
	Posidontial	<u>85%</u>			
	Mix Use	6%			
Original Use	Industrial	2%			
	Other	6%			

	Low Rise	66%
Stories Above Grade	Mid Rise	25%
	High Rise	8%

- low-rise: 1-4 Floors
- mid-rise: 5-8 Floors
- high-rise: >8 Floors

Historical	Historical	9%
Building	Non Historical	91%

Data Base - Basic Information

	Community property	4%
	Housing Authority	2%
Unit Ownership	Non-profit	7%
	Property Management	1%
	Rental	86%

	Affordable Housing	92%
	Luxury	1%
поизніў туре	Market Rate	7%
	Other	1%

	Audit	6%
Project Status	Complete	75%
Project Status	Construction	12%
	Design	7%
	Gut rehabilitation	6%
Retrofit Type	Renovation	2%
	Retrofit	92%

Data Base - Retrofit Focus

Distribution of Gross Project Costs

dian 32,555	n 1,832, <u>224</u>								P ~	roject 0 \$40,000	Cost: D/unit		 2,476 retrofit measures Cost doesn't include incentives
Mec	Mear												NYSERDA Report: Construction cost is \$40,000/unit. Construction period, which includes interior upgrades, was expected to be 14 months for 21 units.
ОМ	5M	10M	15M	20M	25M	30M	35M	40M	45M	50M	55M	60M	
					C	ost Gros	S * ₹						

Project Costs by Unit and Building Type

Measure Overview Multifamily

SCEP

DO YOU HAVE DATA TO SHARE ?

CASE STUDIES AND EXAMPLES

Successful decarbonization projects

Switching from natural gas appliances to electric

- Eden Housing and the East Palo Alto Community Alliance and Neighborhood Development Organization (EPACANDO)
- Demolished 37 apartments, renovated 57 and is building 128 new apartments.
- Affordable housing
- Third remodeled and two-thirds brand new, nine of which will offer supportive services for people who experience homelessness.

Successful decarbonization projects

Switching from natural gas appliances to electric ones

- New induction stove
- Heat pump that offers air conditioning
- 2 Electric water heaters per apartment (resilience)
- Battle with electric equipment, increases in tenant utility costs and energy use, and complex funding structure.
- Manufacturers and contractors are still getting up to speed on the new technology and how to install it.
- "We used to know how big a gas water heater should be to heat enough hot water for a 50-unit apartment building. How many kilowatt hours do we have to come up with to heat the same amount of water for the same amount of people? We've never done that before... We're kind of on the bleeding edge,"
 - Tom White, Eden Housing's associate director

*https://www.kneedeeptimes.org/flipping-the-switch-on-all-electric-housing/

Case Studies and examples

***A Transition from Gas to All-Electric**

- Air sealing and insulation
- Windows
- Heating and cooling
- Other appliances and water heating
- Electric (wiring, PV)

*https://www.builditgreen.org/blog/a-transition-from-gas-to-all-electric/

	Description	Total Costs	Rebates	Estimated Reduction in Utilities
	Electrification Wiring and Rough Patching	\$15,290		-
SURES	Heat Pump Water Heater (3)	\$9,084	-	\$400
ON MEA	Stoves (3), Dryers (2)	\$7,900	\$1,200	\$30
RIFICATI	Service Upgrade	\$12,289	-	-
ELECTR	Subtotal / Subtotal Per Unit	\$44,562 / \$14,854	\$1,200 / \$400	\$430 / \$143

	Description	Description		ription Total C		otal Costs	Rebates		Estimated Reduction in Utilities		Estimated Added Rental Value		Avoided Costs
PE	Knob and Tube Wirin	ng		\$24,058	-		-		\$960		-		
NVELO	Insulation			\$10,230	\$3,000		\$660	-			(\$5,000)		
JING E	Windows		\$59,757		-	\$1,120		\$2,000			(\$59,000)		
BUILI	Subtotal / Subtotal Per Unit		\$94,045 / \$31,348		\$3,000 / \$1,000	\$3,000 / \$1,000 \$1,780 / \$593		\$2,960 / \$987		\$	64,000 / \$21,333		
	Description	Total (Costs	Rebates	Estimated Reducti in Utilities	ion	Estimated Adder Rental Value	d	Avoided Cost	5	Payback Period		
ALS*	Total	\$138,	607	\$4,200	\$2,210		\$2,960		(\$64,000)		14 years		
TOT	Total Per Unit	\$46,2	202	\$1,400	\$737		\$987		(\$21,333)		-		

Case Studies and examples

*Lessons learned and best practices

- Transitioning the building from gas to all-electric has also yielded cost, safety, and health benefits, e.g., improved air quality and removed the risk of indoor fires and explosions
- Unit utility bills \$40-\$90 per month— \$150-\$200 per month in previous winters.
- EUI = 9.75 kBtu per square foot, passes the Architecture 2030 Challenge target for new construction even without using solar panels.
- That means lower energy costs in all seasons.

*https://www.builditgreen.org/blog/a-transition-from-gas-to-all-electric/

New Challenges

Transportation

- Current poor public charging infrastructure:
 - Need to be able to charge at home
 - Who pays for infrastructure? Only EV owners?
 - How to share charging spaces and charging bills?

Resilience

- Electrical outages are much more frequent than natural gas outages
 - Most outages are short (Typically <24h)
 - After disasters, gas infrastructure remains offline for much longer than electrical.
 - On-site storage and generation allows basic home operation during emergencies.

Peak Power

► We need ways for homes to respond to this and minimize cost impacts - On-site storage – batteries or thermal

INNOVATIONS

Cost Compression – Avoid Panel/Circuit Upgrades?

Innovative Technologies

	F.14	
4.5 cu ft Condensing Washer/Dryer Combo	Heat Pump Water Heater	Through-Wall Heat Pump
10A, 1200W	8.3A, 1000W	6.3-15A, ~ 1400W
LG WM3998HBA	GE GeoSpring	Innova HPAC 2.0
	7	

Eatonxxxx

Energy Management

Circuit Breaker (EMCB)

Understanding the NEC: Watt Diet Calculator

New Products – Low Power, plug in, some transportable

Smart Circuit Pauser

Programmable Subpanels

Power-efficient Appliances (120V)

Smart Circuit Breakers

Battery Integrated Stoves

Meter Collars

Potential New Technologies: Combi HPWH

- Low power heat pump: no new electric circuits/panels/utility service drops – saves \$1,000s.
- Heat pump using CO₂ that has very low GWP (= 1)
- Full capacity performance and high COP with heating design temperature of -15 to -5° F
- Provides ~190 deg F supply water for retrofit/compatibility with hydronic heat + DHW
- Thermal Energy Storage: increases capacity and shifts load

SUMMARY AND NEXT STEPS

Summary

- Mostly low-rise \rightarrow Affordable housing occupied by renters
- Building envelope vs building systems
- Typical Measures (Low-Rise)
 - Lighting upgrade (LEDs indoors and outdoors)
 - HVAC (Install Heat Pumps)
 - Plumbing (Low-Flow fixtures)
 - Install windows
- Typical Measures (Mid-Rise)
 - Lighting upgrade (LEDs indoors and outdoors)
 - Plumbing (Low-Flow fixtures)
 - Plumbing (DHW)
 - HVAC (Ventilation)
- Typical Measures (High-Rise)
 - Lighting upgrade (LEDs indoors and outdoors)
 - Plumbing (Low-Flow fixtures)
 - Install windows
 - Roof insulation

Current Costs (will change as we get more data)

Low Rise ~\$47,456 /unit

Mid Rise ~\$40,288 /unit

High Rise ~\$50,730 /unit

Next Steps

- Finish the database data collection target another 500+ projects
- Identify areas prime for cost reduction
- Identify lowest cost approach to large (>70%) CO2e reductions
 - Building envelope vs building systems
- Identify policy recommendations for IRA, local, state and utility programs (support decision-making)
- Affordable housing and market valuation

Next Steps - DOE EAS-E Prize will look for specific MF solutions for hard to electrify MF buildings

🖂 Lea

Figure 3. Exterior image of a low-rise multi-family building.

	Table 3. Summary Features of a Low-Rise Multi-family Building
House Feature	Feature Description
Vintage	1950s
Floor area	750 ft ² per unit, six units (two per floor) plus common areas
Stories	Three
IECC Climate Zone	5A
Garage	None
Water heating	Shared natural gas boiler in unconditioned basement, 199 kBtu/hr
Space heating	Two shared natural gas boilers in unconditioned basement, 80 AFUE, 199 kBtu/hr
Space cooling	Window AC in each unit

Gas central boiler for space heating Gas cooking ranges in each unit

Gas central boiler serving hot water to all units Shared gas vented clothes driers (3).

Air leakage	15 air changes per hour at a 50-pascal pressure difference (ACH $_{\rm 50})$
Cooking	Four-burner propane range
Clothes dryer	120V propane vented clothes dryer
Electric panel	30A panel and service, no free circuit spaces, no arc- or ground-fault circuit interrupter (AFCI or GFCI) protection; indoor panel is wired as a subpanel, with main service feed, meter, and disconnect located on a power pole 20 f from dwelling
House wiring	Romex three-conductor copper wiring
Foundation	Pier and beam foundation with vinyl skirting, underbelly floor insulation at R 19, detached, ripped, and hanging down in various locations
Above grade walls	R-13 fiberglass batts
Windows	Single-pane, aluminum framed
Attic	Low-clearance, maximum height of 24 in, R-19 fiberglass batts
Roof	Low-slope roof, 20 years old

Challenge Overview

The Equitable and Affordable Solutions to Electrification (EAS-E) Home Electrification Prize provides up to \$2.4 million in prizes for innovative solutions that advance electrification retrofits of residential homes across all building types and geographies

Connect with us:

- Iain Walker ISWalker@lbl.gov
- Brennan Less
 BDLess@lbl.gov
- Núria Casquero-Modrego NuriaCM@lbl.gov
 - our web ► homes.lbl.gov

Bringing Science Solutions to the World

LBNL Resources

Casquero-Modrego, N., Chan, W. R., Less, B. D., & Walker, I. S. (2022, September). Getting to Scale for Decarbonizing Homes in the US: An Industry Survey. In IOP Conference Series: Earth and Environmental Science (Vol. 1085, No. 1, p. 012036). IOP Publishing.

► Less, B. D., Casquero-Modrego, N., & Walker, I. S. (2022). Home Energy Upgrades as a Pathway to Home Decarbonization in the US: A Literature Review. Energies, 15(15), 5590. https://doi.org/10.3390/en15155590

► Walker, I. S., Less, B. D., & Casquero-Modrego, N. (2022). Carbon and energy cost impacts of electrification of space heating with heat pumps in the US. Energy and Buildings, 259, 111910. https://doi.org/10.1016/j.enbuild.2022.111910

Less, B. D., Walker, I. S., Casquero-Modrego, N., & Rainer, L. (2021). The Cost of Decarbonization and Energy Upgrade Retrofits for US Homes. Lawrence Berkeley National Laboratory. https://doi.org/10.20357/B7FP4D

► Less, B. D., Walker, I. S., & Casquero-Modrego, N. (2021). Emerging Pathways to Upgrade the US Housing Stock: A Review of the Home Energy Upgrade Literature. Lawrence Berkeley National Lab. https://doi.org/10.20357/B7GP53

► Chan, W. R., Less, B. D., & Walker, I. S. (2021). DOE Deep Energy Retrofit Cost Survey. Lawrence Berkeley National Laboratory. https://doi.org/10.20357/B7MC70

April 17-20, 2023 | Seattle, WA