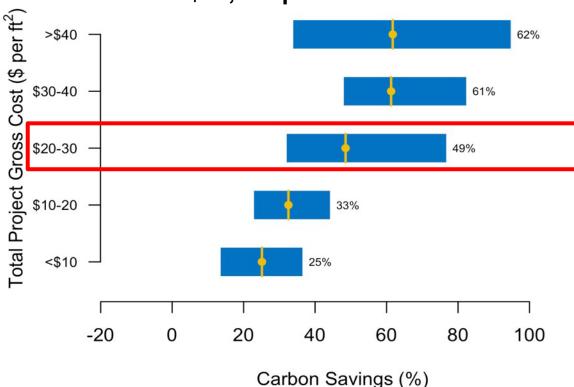


Introduction

To decarbonize American homes and improve energy affordability nationwide, DOE launched the eighth and final Energy Earthshot—the Affordable Home Energy Shot™—to accelerate innovative retrofit solutions that reduce up-front costs, lower utility bills, improve safety and comfort, and address communities' broader needs.



Cost data from 1700 projects

>50% Carbon reductions currently more than \$50,000 per home

Lowest cost projects: basic air sealing/insulation with heat pumps and solar PV

CO₂ focus: \$40,000

About TEN TIMES median US household savings

Costs are highly variable

- Home with A/C trivial to add heat pump.
- Home with no A/C needs new 240V circuit(s), ductwork fabrication, drains, etc.
- Newer home needs no envelope upgrades
- Older home needs air sealing, attic/wall/basement insulation
- Adding EV Charger or Solar PV?

Existing conditions – critical in lower income households

- Asbestos abatement
- Broken/missing
 HVAC/DHW/appliances
- Broken/missing envelope: windows, roofs, walls, doors, downspouts
- Pest control
- No physical room/access
- Not enough panel capacity or space
- Poor condition electrics

Avoiding panel/service/wiring changes

What does it cost?

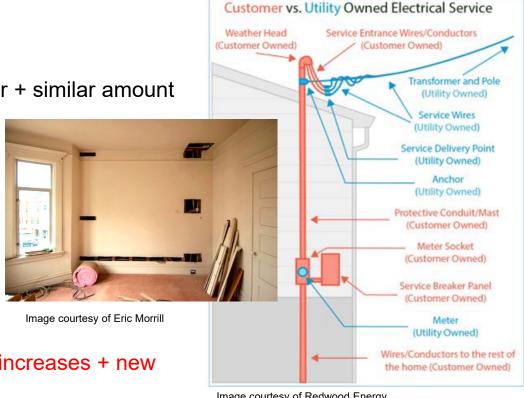
Circuits: \$500-\$1,500 each

Panel: **\$1,000-\$5,000**

Service: \$1,000-\$25,000 to homeowner + similar amount

for utility

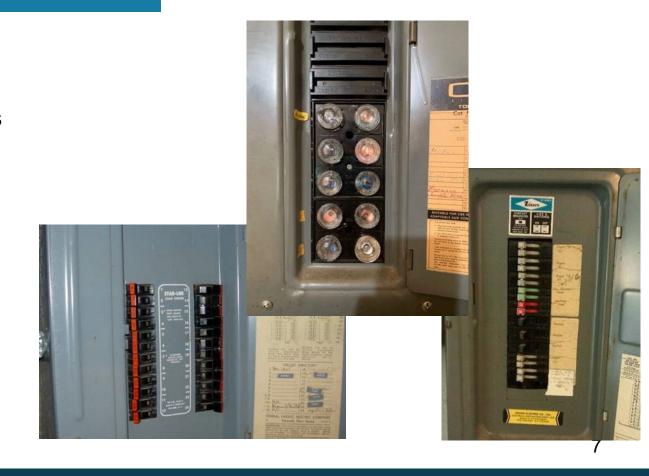
Rewiring trigger: \$10,000 - \$20,000


Time delays

- **3-6 months** project delays
- >1-year lead time on transformers
- Utility might reject your interconnection

Additional ratepayer costs for:

Utility distribution system capacity increases + new generation/storage



Sometimes a panel replacement is needed

May be more common in older lower income less maintained/updated homes

Old, unsafe or damaged:

- Panels
- Breakers
- Wiring
- Junction boxes
- Fuse Boxes

Low Power Electrification Solutions: Smart Panels and Breakers

Smart Breakers \$200 + install

Smart Panels \$3-5k + install

Low Power Electrification Solutions: Circuit Sharing and Pausing

Circuit Sharing & Pausing \$300-900 + install, sometimes DIY EV Charging and Hot Water

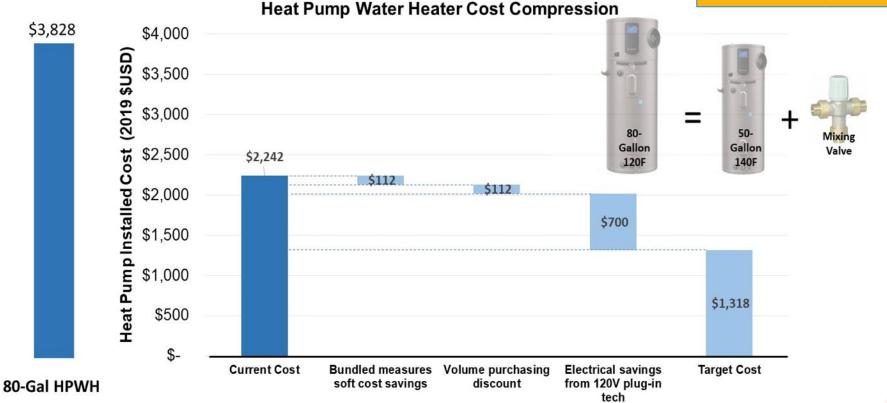
Low Power Electrification Solutions: Low Power Appliances

120V plug-in heating, cooling, hot water

Battery-Integrated Cooking High cost premium

Low Power Electrification Solutions

Meter collars for EVs and PVs \$500 + install


ENERGY TECHNOLOGIES AREA BERKELEY LAB

Using the National Electric Code: "Watt Diet" FREE!!

Device Volts	Device Amps	Of Am	o Panel	Device Amps	Devid
120	8	Ö- Lights/Plug 5	Lights/Plug	8	12
120	8	Lights/Plug 5	Lights/Plug	0	12
120	8	Lights/Plug 5	£ Lights/Plug	8	12
120	10	Garbage 20 Disposal 00	O Kitchen Outlets	13	12
120	7	Refrigerator 8	O Kitchen Dutlets	13	12
120	0	Spare 5	S Dishwasher	12	12
120	0	Furnace 15	O Clothes Washer	13	12
240	20	Heat Pump Centrally & Ducted	O Hybrid Heat Pump Dryer	14	24
240	20	ം ച EV Charger 23	Range Ccooktop +oven	40	24
240	16	里 Solar Input 2	Reat Pump Water Heater	12	24

Appliance Cost Compression

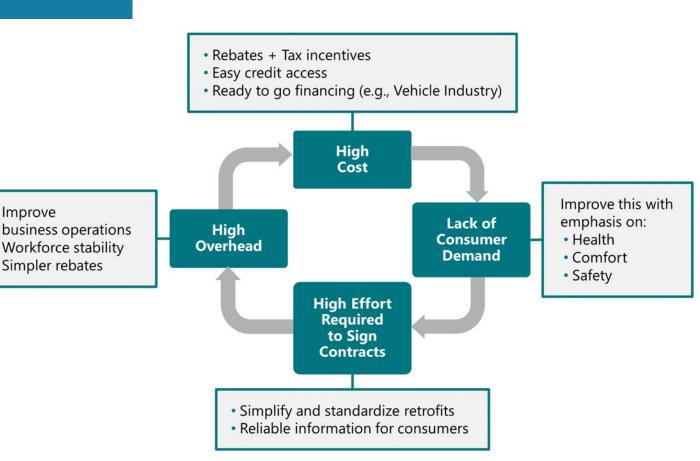
Low income direct install program at SMUD has already proven the potential to cut costs from >\$4k down to \$3400 per unit

Other Affordability Ideas

- "Affordability" based on net monthly cost (not banking metrics of ROI, LCC, TRC, etc.)
 - Bundled financing third party financing shares in bill reductions
 - Include added value: health, safety, comfort, etc.
- Better sizing, installation practice, commissioning = smaller, cheaper installs
- Consistent, long term rebates (not tax credits) helps business plan and organize
- Program design
 - Bulk purchasing
 - Contractors only do installs
 - Training
 - Focus on biggest carbon savings: HP, HPHW, air sealing, insulating
 - Consider DIY approaches (need more 120V plug-in solutions?)

Helping Businesses

Decarbonization upgrades have very high overhead (40%) – we need to address business models


Improve

Workforce stability


Simpler rebates

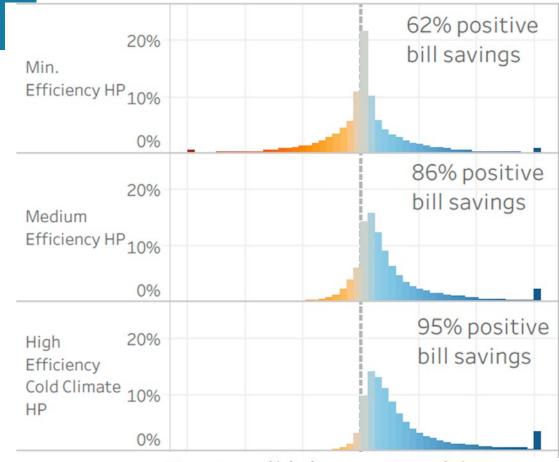
Work is not attractive for contractors

Not enough installers/contractors fewer electricians and plumbers every year....

Bill Savings

- 1. Almost everyone saves: regional variability
- 2. Rate structures matter. Turn *borderline* in to *savings* using pro-Electric rates. Consistent bills through the year: avoids high bill stress
- 3. Completely remove gas to avoid standing charges.
- 4. Need protections for low income build on existing programs.
- 5. Any additional grid infrastructure costs passed on in future rate increases. Vital to minimize added load.
- 6. Solar PV Net Energy Metering is important.

CO₂ neutrality 1.0 2.6 3.0 1.0 1.0 1.0 4.2 2.6 1.5 3.3 2.7 1.8 1.5 1.5 1.8 2.3 2.7 1.7 1.6 1.9 COP Bill neutrality 2.0 3.0 3.0 2.1 3.1 2.9 3.3 2.4 2.7 2.2 2.1 2.5 3.1 3.1 2.7 1.9 2.0 1.8 3.3 2.0 COP

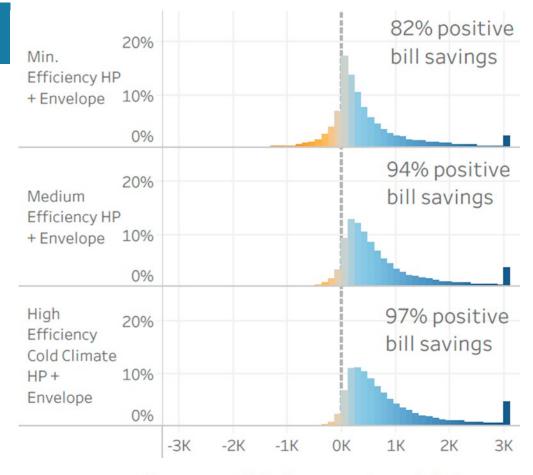

Heat Pump compared with an 80% AFUE gas furnace

(in 2019)

Walker, I.S. Less, B.D., Casquero-Modrego, N. (2022). Carbon and energy cost impacts of electrification of space heating with heat pumps in the US. Energy & Buildings 259, 2022. https://doi.org/10.1016/j.enbuild.2022.111910

Bill Savings

Install high efficiency equipment



Bill savings (\$/yr), capped at +/- \$3k

Wilson, J., Munankarma, P., Less, B., Reyna, J. and Rothgeb, S. 2024. Heat Pumps for All? The distributional costs and benefits of residential airsource heat pumps in the US. Joule. doi.org/10.1016/j.joule.2024.01.022

Bill Savings

Load reduction: air sealing and insulating duct systems and older homes

Bill savings (\$/yr), capped at +/- \$3k

Improve safety and comfort and address community needs

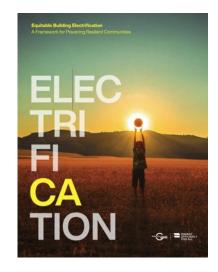
Non-energy benefits – considering added value

Functionality:

Comfort – steady temperatures with heat pumps + air sealing + insulation, adding ability to cool

Health & safety:

Indoor Air: main sources are cooking and poor appliance venting


- This would serve Low-Income/Disadvantaged households the most
- More likely to have poorly vented appliances
- Smaller dwellings have higher contaminant concentrations
- Low income dwellings less likely to have ventilation systems

Outside air: Environmental Justice Issue – often worse in disadvantaged communities

Heat stress: Provision of cooling + more affordable heating/cooling

Solutions for renters, multi-family and low income households

- Renters need protection form increased rents and eviction
 - Look for solutions the do not require MF buildings to be empty – eviction and no right of return a major concern
 - In MF occupants often pay electric bill, but not gas bill if heat and hot water are central systems. How to compensate if someone starts to use a portable heat pump?
- Develop plug-in/transportable solutions for renters
- Lower income households are risk averse can't afford to make a "mistake" – they need reassurance and low-risk, robust, "tried and true" solutions

Leading with Equity and Justice in the Clean Energy Transition: Getting to the Starting Line for Residential Building Electrification

Household interactions.. So many (good) questions....

Programs need to have ready to go, good answers to these questions:

- Will bills go up or down?
- Is it noisy?
- Will I be comfortable?
- Does it cost more to maintain?
- Who will fix it when it breaks?
- Who do you call?
- If you find someone, can they do it?
- If they can, how long do you need to wait? Many months for a contractor + many more months if a utility is involved
- What is the value?

Community and culture

Capitalize on existing culture to get to scale Maine example:

- Bring training together at a state level everyone on the same page
- Understand motivations and tailor solutions... e.g., "Made in America"

Capitalise on

- Frugality,
- Tribalism.
- Territorialism,
- Independence,
- Self Sufficiency

their place.

their grandparents' friends. Things can get dicey when hometown

loyalties are ruffled, and locals draw an invisible line to show outsiders

What about "no income" abandoned property?

Strategies to "decarbonize" while rebuilding:

- 20 properties at once for scale
- Utilize pooled subsidies
- Build to "code" with all-electric design
- Challenging to make a profit needs subsidies

Iain Walker iswalker@lbl.gov
Homes.lbl.gov

Remaining Challenges

Solutions for hard to electrify homes:

- Cold climates
- All-gas homes
- Multifamily homes
- Manufactured homes
- Old/historic homes

The Pathway

- 1. Start now, if not sooner
- Low power electrification of heating, hot water, cooking and laundry (using heat pumps)
- Air seal and insulate older homes & HVAC systems
- Optionally, add Solar PV
- 5. Use the best performing heat pumps you can
- 6. Use integrated appliances for cooking/laundry
- 7. Easy access to rebates/financing
- 8. Help contractors with new business models
- Develop homeowner and trades guidance/reassurance/risk assessment
- 10. Emphasize health/safety benefits
- 11. Train more trades
- 12. New rate structures + rebates + financing
- 13. Make every AC replacement a heat pump

HOME DECARBONIZATION IS:

Costly
Time Consuming
Hard

HOME DECARBONIZATION NEEDS TO BE:

Affordable Simple Easy

