

Low-Power Electrification, the NEC and Building Energy Codes

Brennan Less LBNL Residential Building Systems 2024-04-18

DOE Codes Webinar: The Intersection of Energy Codes and Electrical Codes on the Road to Decarbonization

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Energyvs.Power(use over time)(instantaneous demand)

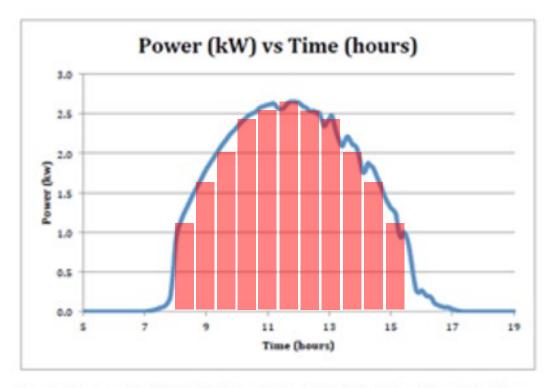


Figure 1. The power (in kW) produced by a solar panel installation at Bryn Mawr College [1] on January 27, 2013.

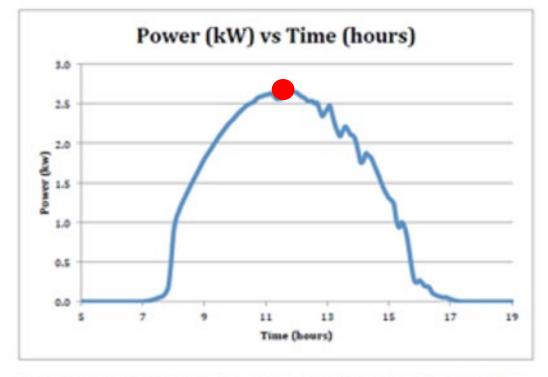
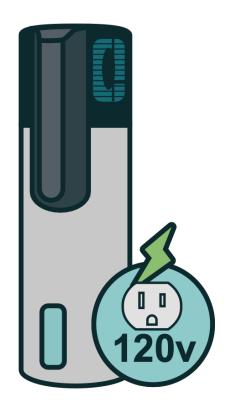


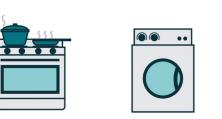
Figure 1. The power (in kW) produced by a solar panel installation at Bryn Mawr College [1] on January 27, 2013.

Building Energy Codes

National Electrical Code


Energy Efficiency vs. Power Efficiency

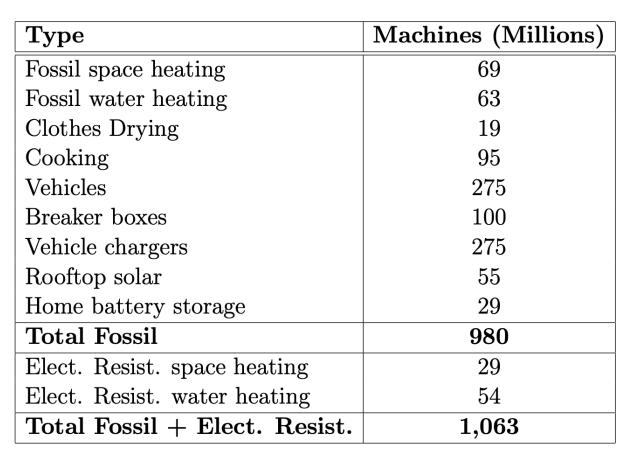
Electric Resistance Water Heater ~3,500 kWh per year 4.5-5.5 kW Energy and Power Inefficient

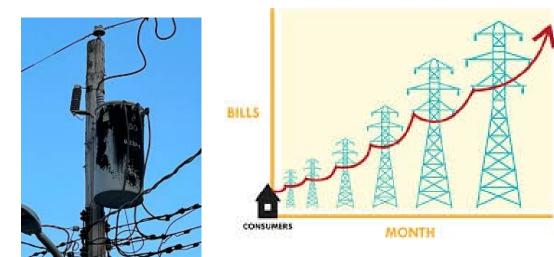

240V Heat Pump Water Heater ~1,000 kWh per year 4.5 kW Energy Efficient, Power Inefficient

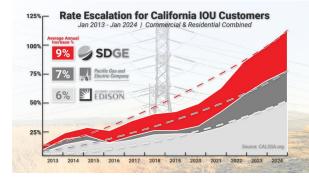
120V Heat Pump Water Heater ~1,000 kWh per year 1 kW Energy and Power Efficient

Why Power Efficiency in Existing Dwellings?

- Massive electrification of US housing
- Majority existing dwellings
- ~1/3 with 100A service and limited breaker slots
- Upsizing panels and service wires is expensive and time consuming
 - >\$100 billion for all 100A service panels
- Context: Flexible utility rates, PV, storage, demand response, controls.

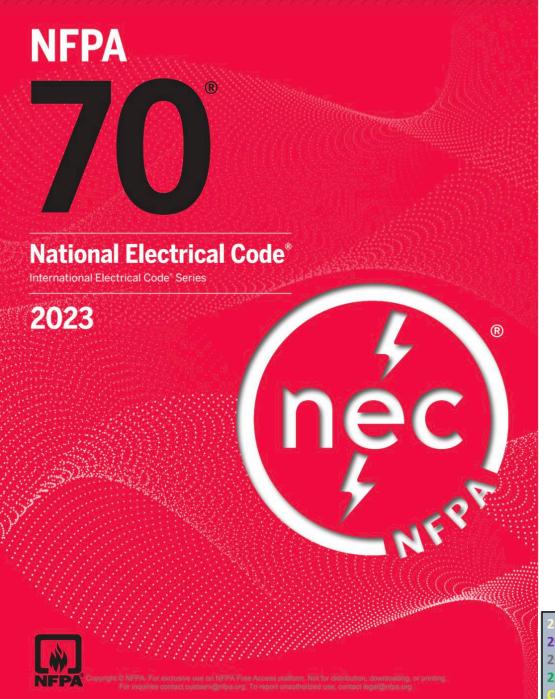



Table 6:Adding up all the machines.


Source: https://www.rewiringamerica.org/policy/one-billion-machines

Why Power Efficiency in New Construction?

- Every new load added to the grid can contribute to need for:
 - Utility distribution infrastructure upgrades
 - New power generation facilities
 - Utility staff time for load studies and infrastructure upgrades
- Direct impacts:
 - Infrastructure upgrade costs passed onto homeowners or developers
 - Time-delays for utility interconnection
 - Interconnection denials
- Indirect impacts:
 - Limits ability of other households to electrify
 - Increases utility rates for all ratepayers


Strategies to Use Today for Low-Power Electrification

- 1. Pick high efficiency equipment (Heat Pump HSPF > 10)
- 2. Pick power efficient versions of heat, water heater, dryer, cooking
 - E.g., heat pumps without backup resistance, low amp heat pump water heaters with big tanks
- 3. Avoid oversizing (heat pump 2- to 3-tons for most homes, low-power level 2 EVSE)
- 4. Pick multifunction devices (e.g., combo washer/dryer, range)
- 5. Consider circuit sharing devices (e.g., alternate dryer & EV charger)
- 6. Consider circuit pausing devices (e.g., pauses EVSE charger or heat pump water heater)
- 7. Decrease your loads (e.g., improved envelope, use ductless equipment, efficient fixtures)

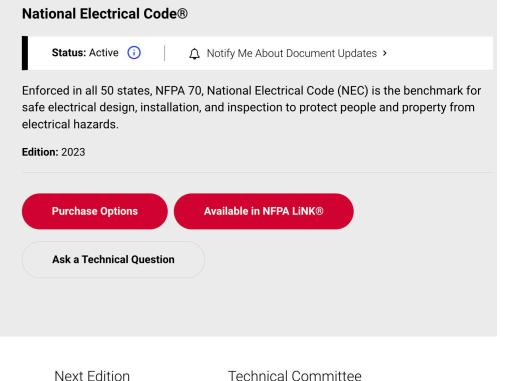
Building Energy Codes vs. Electrical Codes

• Building Energy Codes

- What loads you must install, their efficiency, etc.
- Electrification, pre-wiring and sizing mandates
- National Electrical Code
 - How you must safely install and size infrastructure for those loads
 - Circuit requirements, load calculations, conductor and overcurrent sizing, labeling, etc.
- National Electrical Safety Code
 - Addresses grid distribution infrastructure
 - Like the "NEC" for the grid

- National Fire Protection Association (NFPA) standard addressing electrical hazards and fire safety
- NOT a decarbonization or efficiency code
- Adopted and enforced by local jurisdictions, most often at the state-level, sometimes at county or municipal levels

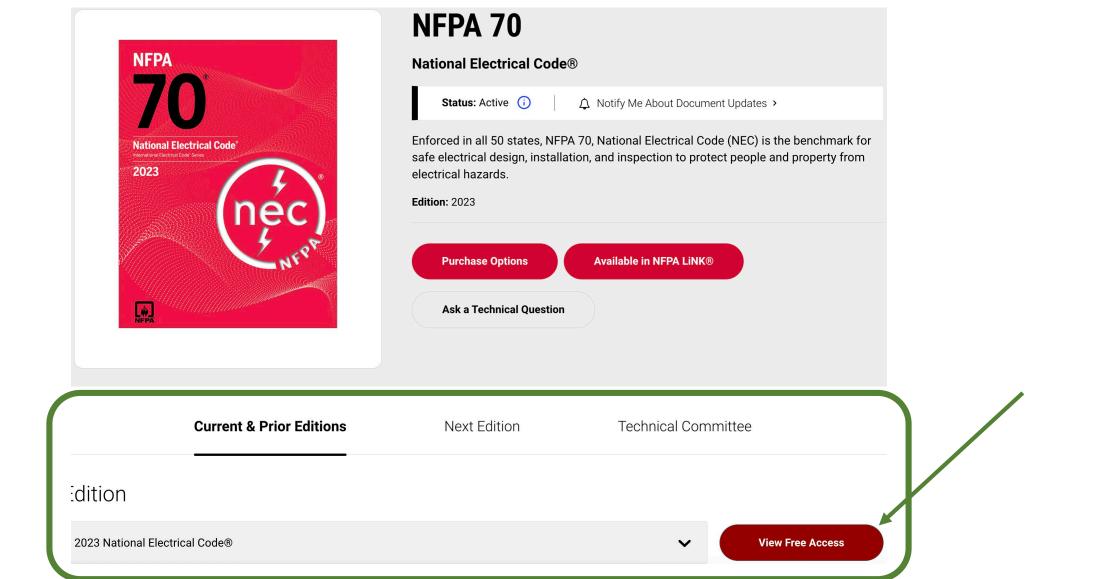
For more information: https://www.nfpa.org/education-and-research/electrical/nec-enforcement-maps


Accessing the NEC for Free Online

• Visit: https://www.nfpa.org/en/codes-and-standards/nfpa-70-standard-development/70

Current & Prior Editions

NFPA 70


Edition

2023 National Electrical Code®

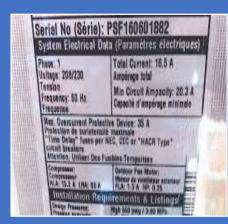
V

Accessing the NEC for Free Online

• Visit: https://www.nfpa.org/en/codes-and-standards/nfpa-70-standard-development/70

NEC Sections Relevant to Building Energy Codes

- Load Calculations (Section 220)
- Electric Vehicle Power Transfer System (625)
- Solar Photovoltaic (PV) Systems (690)
- Interconnected Electric Power Production Sources (705)
- Energy Storage Systems (706)
- Energy Management Systems (750)


NEC Sections Relevant to Building Energy Codes

- Load Calculations (Section 220) Today's focus
- Electric Vehicle Power Transfer System (625)
- Solar Photovoltaic (PV) Systems (690)
- Interconnected Electric Power Production Sources (705)
- Energy Storage Systems (706)
- Energy Management Systems (750)

Important Changes 2023 vs. 2020 NEC

- New Electric Vehicle Supply Equipment (EVSE) (220.57) provision for load calculations
 - Must use larger of 7.2 kW and nameplate rating.
- New Energy Management System (EMS) (220.70) provision for load calculations
 - EMS current set point can be used in load calculations, limited to 80% of panel rating
- Revision of Metering Data method (220.87)
 - Homes with PV systems or demand response can use this method when at least one-year of data is available
- Revision of EVSE Rating (625.42) provision allowing ratings:
 - a) Based on use of EMS
 - b) Based on EVSE with adjustable settings.
- Revision of Energy Management System (EMS) (750) section:
 - Added listing requirement (750.60) (UL 916?)
 - Added details around current setpoints, labeling requirements, malfunction behavior, and protection from end-user tampering (750.30)

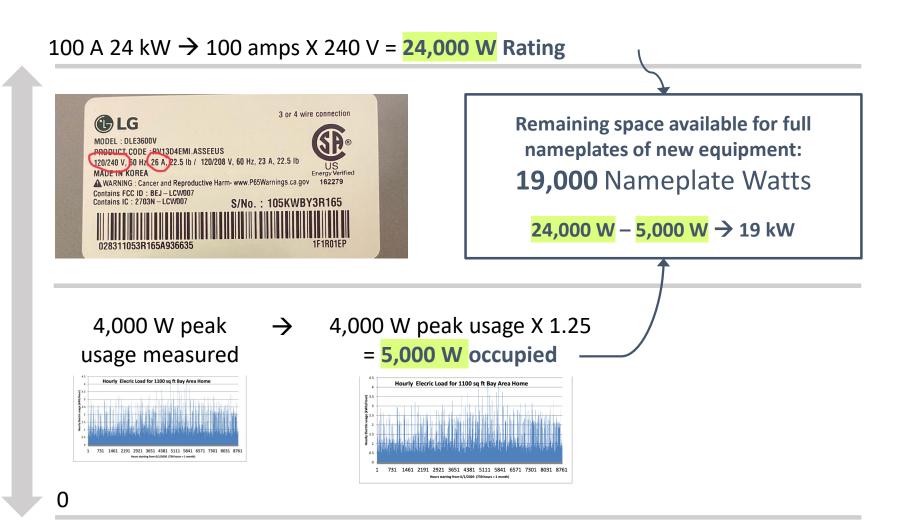
Load Calculations in Dwellings

220.83 Existing Dwelling Units

• Asset rating

• Estimates load based on nameplate ratings of installed appliances

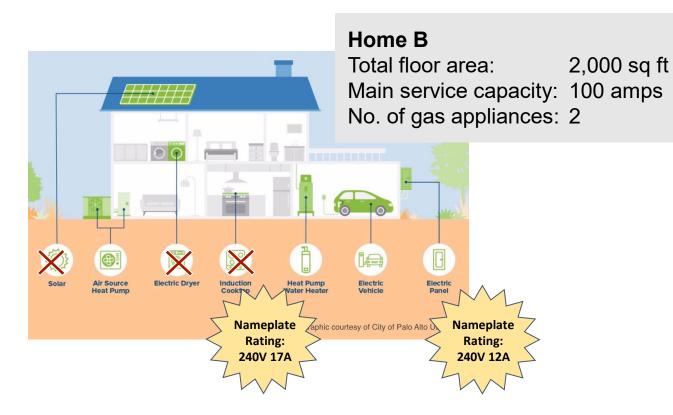
- No New HVAC: 100% of first 8,000 w + 40% of remaining loads (including hvac)
- New HVAC: 100% of first 8,000 w + 40% of remaining loads + max(heating, cooling)
- Gives larger existing load but allows more new load
- Best option when adding lots of new loads and/or cannot use metering data
- Requires inspection of home and recording of nameplate values
- Similar sections for new dwellings (220.82) and multifamily dwellings (220.84)



220.87 Determining Existing Loads

- Operational rating
- Estimates load based on metering data plus 25% safety factor
- New loads add at 100% of their nameplate rating
- Gives smaller existing load but allows less new load
- Best option when adding one or two loads, or adding loads over time
- Automated and scalable using smart meter infrastructure

Load Calculation with 220.87



Load Calculation with 220.83

Adding Electric HVAC, Heat Pump Water Heaters

In this example, we use NEC code sections **220.83 (B)**

Load Type	Amps	Volts	Watts
Kitchen Circuit	12.5	x 120	= 1500
Kitchen Circuit	12.5	x 120	= 1500
Laundry Circuit	12.5	x 120	= 1500
Refrigerator	10	x 120	= 1200
Dishwasher	10	x 120	= 1200
Garbage Disposal	5	x 120	= 600
Lights + Plugs	(3 watts / so	q foot)	= 6000
First 8,000 watts @ 1.0 coir Remaining 5,500 watts @ 0			
HVAC 4,080 watts @ 1.0 coincidence factor HPWH 2,880 watts @ 0.4 coincidence factor			= 4,080 = 1,152
		Total	= 15,432

Amperage = 15,432 with 240V = 65 amps

What New Loads Matter Most?

- EVSE: 3 12 kW
- Resistance Heating: 5 20 kW
- **Cooking**: 6 13 kW
- HVAC Heat Pumps: 3 10 kW
- Clothes Drying: 4 6 kW
- Water heaters: 4.5 kW

Working to Make the <u>2026 NEC</u> Friendly to Home Decarbonization

Two DOE lab teams (LBNL and NREL) are investigating panel upgrades in the US housing stock, and working with an industry coalition formed under **Build-It Green**'s POWER group (led by Jenny Low and Hannah Bruegmann)

What Did We Do and What Are Our Goals?

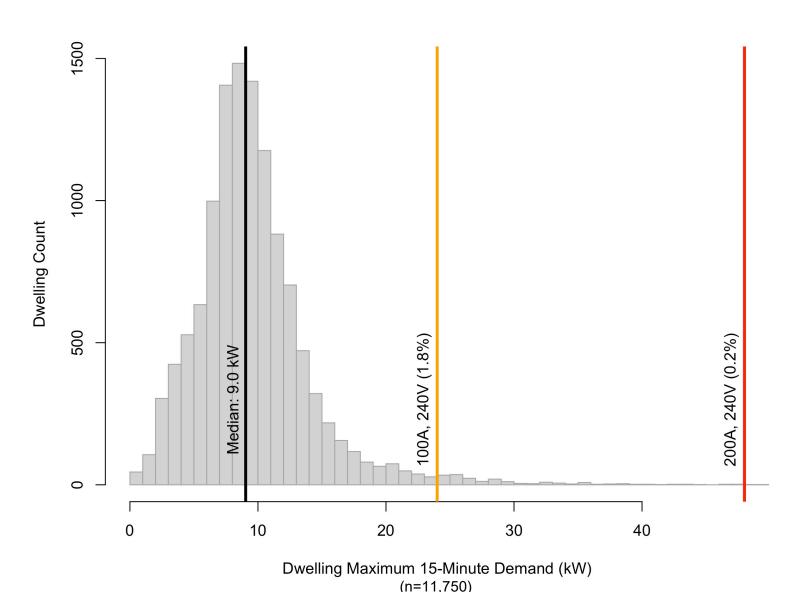
- What did we do?
 - Reviewed Section 220 for barriers/challenges to existing dwelling electrification
 - Analyzed metering data to understand dwelling power demand
 - Submitted 17 PIs to NFPA addressing load calculations in Section 220
 - Participated in Task Group 4, attended CMP meetings in Jan 2024
- Our Goals
 - Clear and safe load calculations that support home electrification
 - Assumptions based on actual performance in dwellings based on metered data
 - Accurate, scalable electrical load calculations using nation's smart meters
 - Apply results to other sections throughout 220, as appropriate

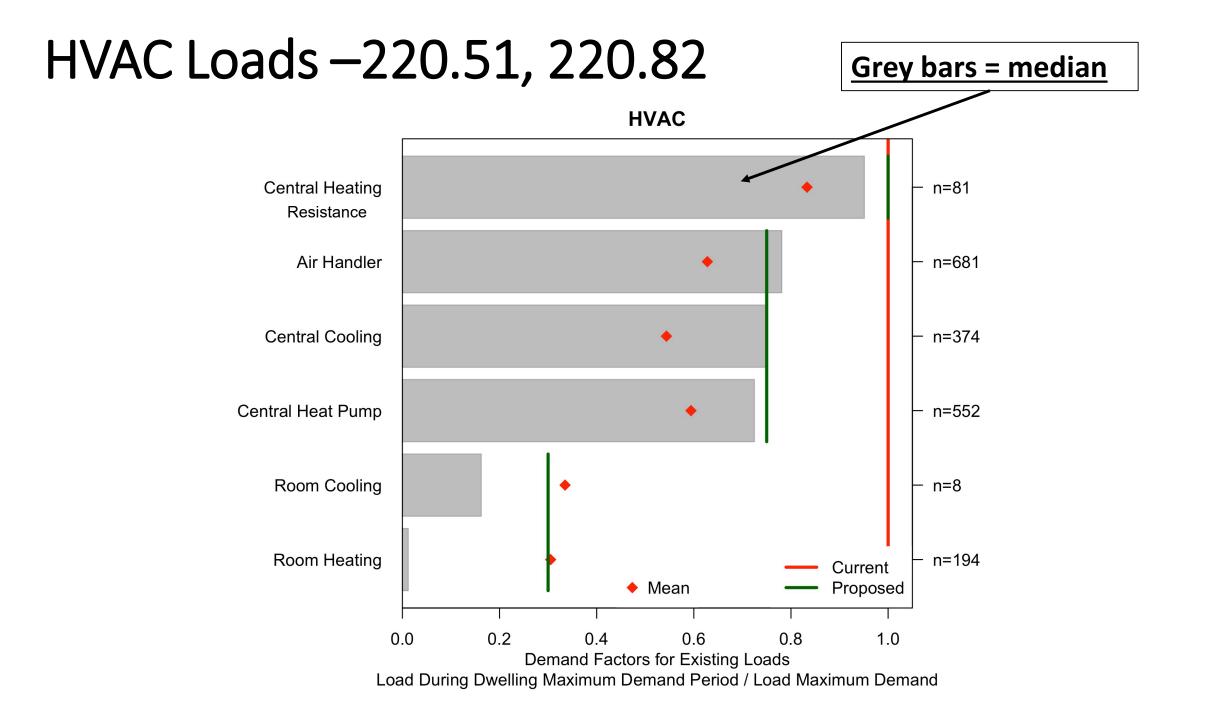
What Data Did We Use?

• Whole dwelling 15- and 60-minute maximum demand data

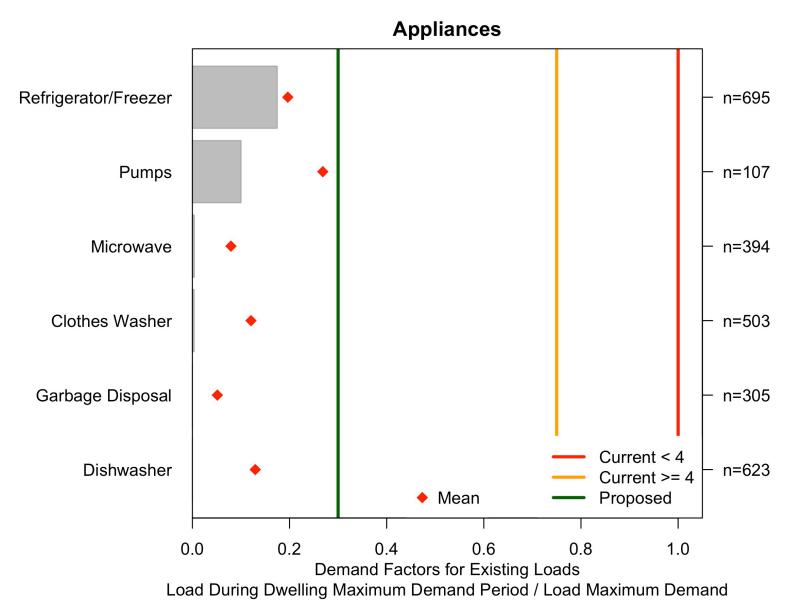
- 11,750 existing US dwellings
- 2.7 years per dwelling
- 32,000 dwelling-years of data

• End-use sub-metering 15-minute data

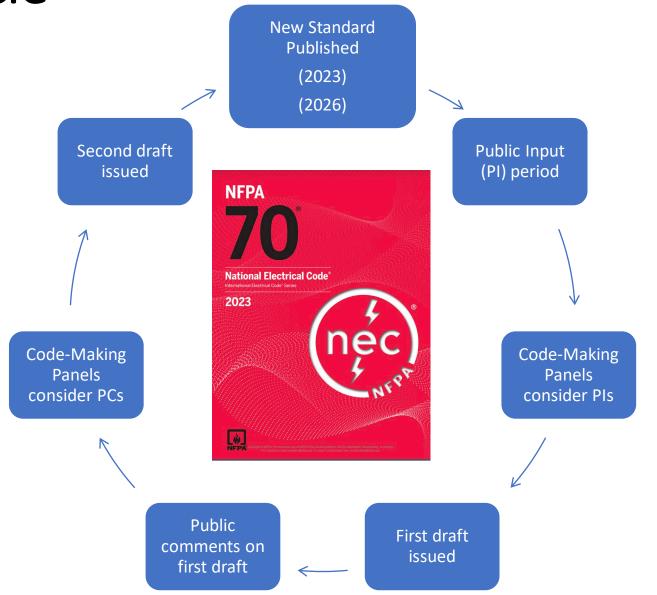

- 957 existing US dwellings
- 9,490 branch circuits
- 3.5 years per dwelling
- 3,376 dwelling-years of data


• Lighting audit data

- 2,053 existing US dwellings
- States include: **TX**, CA, NY, CO, OR, WA, ID, MT, **VT**
- Housing types: **Single-family**, multi-family and manufactured


High-Level Learnings for Services and Feeders

- Most dwellings have LOTS of capacity for new loads
- New loads add at <100%
- Lots of load diversity (40-50%), increases with more connected loads
- Never do more than four loads operate at or near 100% together
- Appliance maximum power draw < nameplate ratings

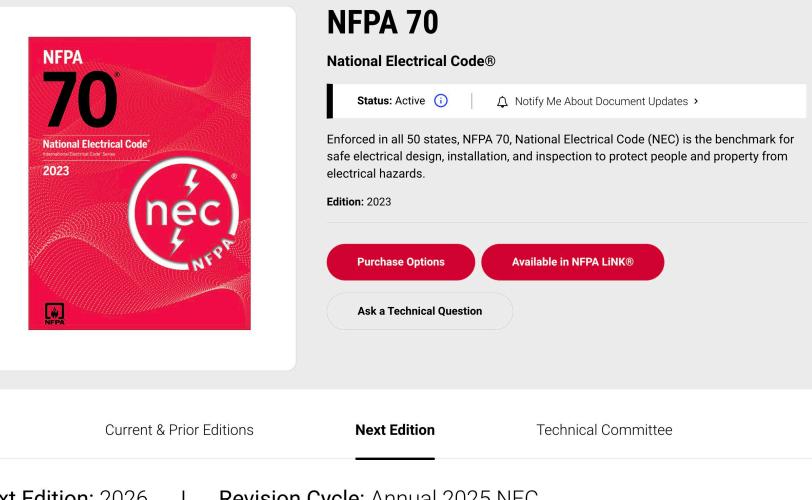

Appliance Loads – 220.53

NEC Revision Cycle

- Revised on a 3year cycle
- Current edition: 2023
- Next edition: 2026

 Adopted on different timelines across the US

Changes We Proposed for the 2026 NEC

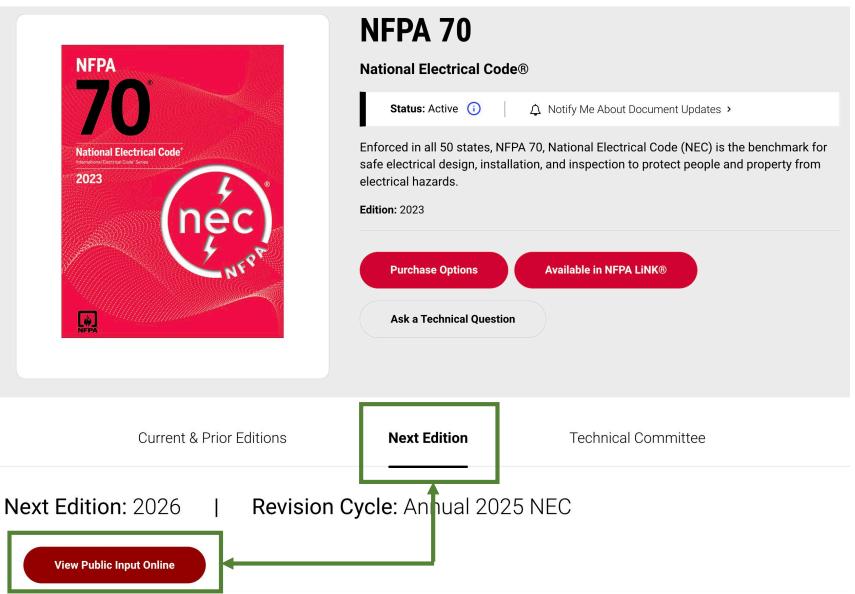

- Changes likely in the pipeline. NOT yet finalized or approved.
 - Reduction in general lights and general receptacles loads, from 3 w/ft² to 2 w/ft²
 - Reduction in baseline kVA for loads in new dwelling units, from 10 kVA to 8 kVA (220.82)
 - Remove differential treatment of new HVAC vs. other new loads in existing dwellings (220.83)
 - Explicit treatment of EVSE in new, existing and multifamily dwelling load calculations (220.82 220.84)
 - "Power Control Systems" provide overload protection. New concept to supplement EMS provisions.
 - Expanding ability to take credit for load controls in NEC load calculations
- Changes we are still fighting for. We NEED your help.
 - Re-write of metering data method (220.87) to allow deduction of loads being removed, use of demand factors, and clarification around metering, data interval, time frequency and dwellings with PV.
 - Reduced demand factors for heat pump technologies throughout section 220
 - Allowance to use nameplate ratings for low-power appliances (e.g., clothes dryers, EVSE)

How To Get Involved

Event	Date	Complete
Public Inputs (PIs) to 2023 NEC	Summer 23'	X
Task groups review/process PIs	Fall 23'	X
Code-making panel meetings, draft 1	January 24'	X
Final, online 1st draft voting. ² / ₃ majority required for First Revision	Spring 24'	
First draft 2026 NEC issued publicly	<u>July 10th, 24'</u>	
END of Public Comment (PCs) period for First Draft	<u>Aug 28th, 24'</u>	
Task groups review/process PCs	Sept 24'	
Code-making panel meetings, draft 2	Oct 24'	
Final, online 2nd draft voting. ² / ₃ majority required for Revision	Winter 25'	
Second draft 2026 NEC issued publicly	March 21, 25'	

Submitting Public Comments on Draft 1

Visit: https://www.nfpa.org/en/codes-and-standards/nfpa-70-standard-development/70



Next Edition: 2026 Revision Cycle: Annual 2025 NEC

View Public Input Online

Submitting Public Comments on Draft 1

Visit: https://www.nfpa.org/en/codes-and-standards/nfpa-70-standard-development/70

What's Not In the NEC Yet

- Battery-integrated appliances
- Digital load control (e.g., CTA 2045, smart appliances)
- DC microgrids
- Back feeding power from end-use appliances with batteries
- Required EVSE circuit(s)
- Vehicle-to-Everything

Ways the Energy Code Might Encourage Power-Efficient Electrification

- Large wires, small loads
- Support installation of low-power appliances
- Credit use of load controls
- Envelope solutions that limit HVAC loads and eliminate provision of backup strip heat
- Ban instant electric water heaters
- Require EVSE configured with load control capability
- Consider trade-offs of wiring for 240v electric vs. 120v electric loads
- Encourage use of smart panels and/or smart breakers for future energy management
- Encourage use of equipment with remote control capability for demand response

Other Resources for Power-Efficiency

Redwood Energy Pocket Guides and Watt Diet Calculator

https://www.redwoodenergy.net/research https://www.redwoodenergy.net/watt-dietcalculator

Redwood Energy

Rewiring America planning tools

https://homes.rewiringamerica.org/project s/electrical-panel-homeowner https://homes.rewiringamerica.org/person al-electrification-planner

CalNext Study of Load Control Solutions

https://www.veic.org/Media/Default/Reports/ET22S WE0057%20Market%20Study%20of%20Electric%20In frastructure%20Upgrade%20Alternatives%20for%20El ectrification.pdf

Market Study of Household Electric Infrastructure Upgrade Alternatives for Electrification

Final Report ET22SWE0057

Thanks!

Brennan Less (<u>bdless@lbl.gov</u>) homes.lbl.gov

