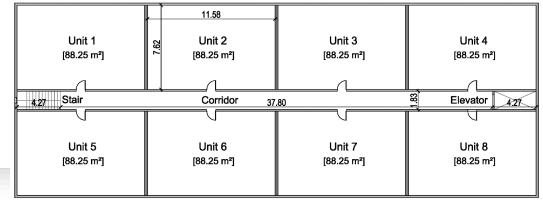
The Impact of Simplified Window and Exhaust Fan Assumptions on Model-Based Predictions of Inter-Zonal Air Flow and Contaminant Transport in Multifamily Buildings

Cara Lozinsky, Núria Casquero-Modrego and Iain Walker

44th AIVC Conference - Dublin, Ireland 10th October, 2024

Background


- Occupant behaviours (exhaust fan operation and window operation) are often highly variable and impact indoor air quality
- In building performance simulation, occupant behaviours use fixed schedules that do not reflect reality

Research Questions

- 1. How do occupant behaviors, specifically window and exhaust fan operation, impact air flow and contaminant transport in multifamily residential buildings?
- 2. Is it OK to use simplifying assumptions, such as, using the same schedules for all units?

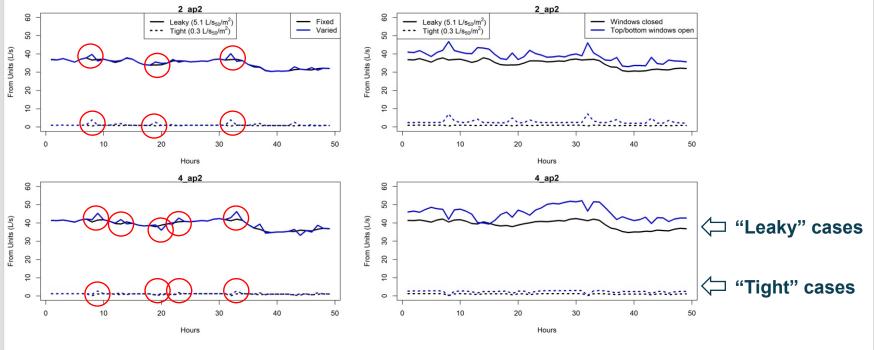
Methodology

- Coupled CONTAM-EnergyPlus simulations
 - Annual simulations, 3-min time-steps
- Parametric Variables
 - Building prototype: Height (4/20 story) + 3 story no corridor
 - Climate zone: hot humid, mixed humid, very cold
 - Ventilation system: supply, exhaust, balanced (ASHRAE 62.2 compliant)
 - Dwelling unit air leakage: 5.1, 1.5 & 0.25 l/s/m²
- Contaminant emissions
- Sensitivity Analysis
 - Exhaust fan operation schedules
 - Window operation

Base Case Assumption (no open windows)

Start and End Times	Activities	Kitchen Fan L/s (cfm)	Bathroom Fan L/s (cfm)	Laundry Fan L/s (cfm)
07:00 - 07:30	Showering	0	25 (53)	0
07:30 – 08:00	Cooking and Showering	50 (106)	25 (53)	0
11:45 – 12:15	Cooking	50 (106)	0	0
18:00 – 18:30	Cooking	50 (106)	0	0
21:30 - 22:00	Laundry	0	0	37.5 (79)

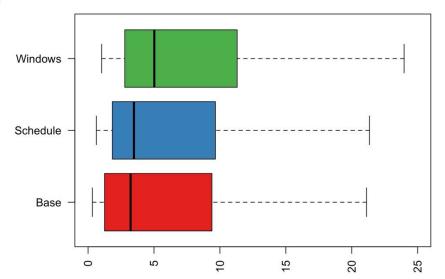
Variable Operation


- Three fan operation profiles, assigned in continuous rotation
- Ground and top floor open windows

Results

Direct Air Flow from Adjacent Units: Short-Term Effects

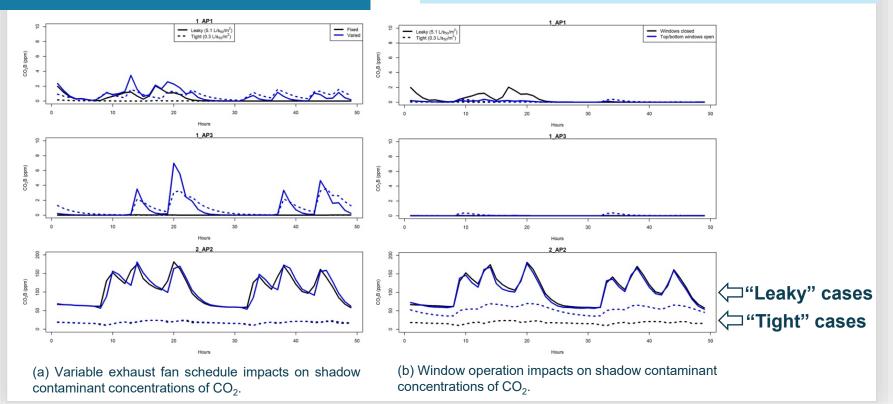
Occupant activity schedule and window operation impacts from adjacent units for the mid-rise common corridor prototype.



(a) Variable exhaust fan schedule

(b) Window operation

Direct Air Flow from Adjacent Units: Long-Term Effects


Worst Case From Units Airflow (L/s)

Worst-Case, Annual Average "From Units" Air Flow (L/s) from Each Simulation Case

- Window operation had a greater impact (~2 L/s or 4 cfm) compared to exhaust fan schedules (<1 L/s or 2 cfm). Bigger impacts in leakier buildings.
- Building prototype (mid- and high-rise) had minimal influence on air flow results.
- The changes in air flow were small relative to the total mechanical system flow of 27.5 L/s (58 cfm), with typical variations being even smaller.

Contaminant Transport

Shadow contaminant concentrations of CO2 in zones directly adjacent to the shadow contaminant source zone (1_ap2)

Conclusions

- Incorporating window operation had a more significant effect on both inter-unit air flow and contaminant transport than variable exhaust fan schedules:
 - Variable exhaust fan schedules increased worst-case inter-unit air flow by ~1L/s (2cfm)
 - Window operation increased worst-case inter-unit air flow by 2L/s (4cfm)
 - Air flow changes were minor, representing a small portion of the overall mechanical system flow (27.5 L/s (58cfm))
- Contaminant concentration changes were generally under 5%
- Overall, the study supports using simplified, static approaches to modeling airflow and air quality in multi-zone buildings

Acknowledgments

- Thank you to our co-authors at Lawrence Berkeley Labs:
 - Brennan Less
 - Michael Sohn
- This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Office, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231.

Questions

