Assessment of organic compound exposures, thermal comfort parameters, and HVAC system-driven air exchange rates in public school portable classrooms in California

Publication Type

Report

Author

Abstract

The prevalence of prefabricated, portable classrooms (portables, relocatables, RCs) has increased due to class size reduction initiatives and limited resources. Classroom mechanical wall-mount heating, ventilation, and air conditioning (HVAC) systems may function improperly or not be maintained; lower ventilation rates may impact indoor air and environmental quality (IEQ). Materials in portables may off- gas volatile organic compounds (VOCs), including formaldehyde, as a function of age, temperature, and humidity. For a pilot study, public K-12 schools located in or serving target areas within five Los Angeles County communities were identified. In two communities where school districts (SD) consented, 1-3 randomly selected portables, one newer and one older, and one main building control classroom from each participating school were included. Sampling was conducted over a five-day school week in the cooling and heating seasons, or repeated twice in the cooling season. Measurements included passive samplers for VOCs, formaldehyde and acetaldehyde, and air exchange rate (AER) calculation; indoor air temperature and humidity; technician walk-through surveys; an interview questionnaire about HVAC system operation and maintenance (O&M). For an intervention study evaluating advanced HVAC technologies in comparison to the common conventional technology, and materials for source reduction of VOCs, four RC were manufactured and located in pairs at two schools in two recruited Northern California SD in different climate zones. RCs were built with the two HVAC systems, cabinetry and conduit for monitoring equipment, and standard or advanced interior finish materials. Each RC was its own control in a case-crossover design — HVAC systems alternately operated for 1-2 week intervals in the 2001-02 school year, with IEQ monitoring including aldehyde and indoor air temperature and humidity data. Measured classroom AER were low, formaldehyde concentrations were below the state indoor air guideline "target level," and concentrations of most target VOCs were low. O&M questionnaire results suggested insufficient training and communication between custodians and SD offices concerning HVAC systems. Future studies should attempt larger sample sizes and cover larger geographical areas but continue to assess multiple IEQ parameters during occupied hours. Teachers, custodians, and SD staff must be educated on the importance of adequate ventilation with filtered outdoor air.

Year of Publication

2003

Organization