Efficacy of Intermittent Ventilation for Providing Acceptable Indoor Air Quality
Publication Type
Date Published
Author
Abstract
Ventilation standards and guidelines typically treat ventilation as a constant and specify its value. In many circumstances a designer wishes to use intermittent ventilation, rather than constant ventilation, but there are no easy equivalencies available. This report develops a model of efficacy that allows one to calculate how much intermittent ventilation one needs to get the same indoor air quality as a the continuous value specified. We have found that there is a simple relationship between three dimensionless quantities: the temporal ventilation effectiveness (which we call the efficacy), the nominal turn-over and the under-ventilation fraction. This relationship allows the calculation of intermittent ventilation for a wide variety of parameters and conditions. We can use the relationship to define a critical time that separates the regime in which ventilation variations can be averaged over from the regime in which variable ventilation is of low effectiveness. We have found that ventilation load-shifting, temporary protection against poor outdoor air quality and dynamic ventilation strategies can be quite effective in low-density buildings such as single-family houses or office spaces. The results of this work enable ventilation standards and guidelines to allow this extra flexibility and still provide acceptable indoor air quality.